Bibliography

[1]
2]

[3]
[4]
[5]
[6]
[7]
(8]

(9]
[10]

[11]

[12]
[13]

[14]

[15]

116]

[17]
[18]

P. Hudak, “Conception, Evolution and Application of Functional Programming
Languages,” ACM Computing Surveys, vol. 21, no. 3, 1989.

P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A History of Haskell: Being
Lazy with Class,” in Proceedings of the Conference on History of Programming
Languages. ACM Press, 2007.

P. Wadler, “Theorems for Free!” in Proceedings of the International Conference
on Functional Programming and Computer Architecture. ACM Press, 1989.

S. Marlow, Ed., Haskell Language Report, 2010, available on the web from: https:
/ /www.haskell.org/definition /haskell2010.pdf.

M. P. Jones, “Typing Haskell in Haskell,” in Proceedings of the Haskell Workshop.
University of Utrecht, Technical Report UU-CS-1999-28, 1999.

H. Barendregt, The Lambda Calculus, Its Syntax and Semantics. North Holland,
1985.

S. Singh, The Code Book: The Secret History of Codes and Code Breaking. Fourth
Estate, 2002.

H. Glaser, P. Hartel, and P. Garratt, “Programming by Numbers: A Programming
Method for Novices,” The Computer Journal, vol. 43, no. 4, 2000.

J. Gibbons and O. de Moor, Eds., The Fun of Programming. Palgrave, 2003.

G. Hutton, “A Tutorial on the Universality and Expressiveness of Fold,” Journal
of Functional Programming, vol. 9, no. 4, 1999.

G. Hutton and J. Wright, “Calculating an Exceptional Machine,” in Trends in
Functional Programming Volume 5. Intellect, 2006.

G. Huet, “The Zipper,” Journal of Functional Programming, vol. 7, no. 5, 1997.
G. Hutton, “The Countdown Problem.,” Journal of Functional Programming,
vol. 12, no. 6, 2002.

R. Bird and S.-C. Mu, “Countdown: A Case Study in Origami Programming,”
Journal of Functional Programming, vol. 15, no. 5, 2005.

S. Peyton Jones, “Tackling the Awkward Squad: Monadic Input/Output, Concur-
rency, Exceptions, and Foreign-Language Calls in Haskell,” in Engineering Theo-
ries of Software Construction. 10S Press, 2001. ‘

D. E. Knuth and R. W. Moore, “An Analysis of Alpha-Beta Pruning,” Artificial
Intelligence, vol. 6, no. 4, 1975.

S. Awodey, Category Theory. Oxford University Press, 2010.

P. Wadler, “Monads for Functional Programming,” in Proceedings of the Markto-
berdorf Summer School on Program Design Calculi. Springer, 1992.



Bibliography 299

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

27]

28]

[29]
[30]
[31]
[32

[33]

(34]

(35]

[36]
[37]

[38]
[39]

[40]

C. McBride and R. Paterson, “Applicative Programming With Effects,” Journal
of Functional Programmaing, vol. 18, no. 1, 2008.

G. Hutton and D. Fulger, “Reasoning About Effects: Seeing the Wood Through
the Trees,” in Proceedings of Trends in Functional Programming, 2008.

G. Hutton and E. Meijer, “Monadic Parser Combinators,” University of Notting-
ham, Technical Report NOTTCS-TR-96-4, 1996.

——, “Monadic Parsing in Haskell,” Journal of Functional Programming, vol. 8,
no. 4, 1998.

V. Rayward-Smith, A First Course in Formal Language Theory. Blackwell Sci-
entific Publications, 1983.

D. Leijen, “Parsec: A Parsing Library for Haskell,” available on the web from:
https://hackage.haskell.org/package/parsec.

A. Gill and S. Marlow, “Happy: A Parser Generator for Haskell,” available on the
web from: https://hackage.haskell.org/package/happy.

D. Piponi, “Haskell Monoids and their Uses,” 2009, available on the web from:
http://tinyurl.com/piponi-monoids.

E. Meijer, M. Fokkinga, and R. Paterson, “Functional Programming with Ba-
nanas, Lenses, Envelopes and Barbed Wire,” in Proceedings of the Conference on
Functional Programming and Computer Architecture. Springer, 1991.

L. Meertens, “Calculate Polytypically!” in Proceedings of the International Sym-
posium on Programming Languages: Implementations, Logics, and Programs.
Springer, 1996.

J. C. Reynolds, Theories of Programming Languages. Cambridge University Press,
1998.

J. Hughes, “Why Functional Programming Matters,” The Computer Journal,
vol. 32, no. 2, 1989.

J. Launchbury, “A Natural Semantics for Lazy Evaluation,” in Proceedings of the
Symposium on Principles of Programming Languages. ACM Press, 1993.

S. Peyton Jones and D. Lester, Implementing Functional Languages: A Tutorial.
Prentice Hall, 1992.

N. Danielsson and P. Jansson, “Chasing Bottoms: A Case Study in Program Ver-
ification in the Presence of Partial and Infinite Values,” in Proceedings of the
Conference on Mathematics of Program Construction. Springer, 2004.

J. Gibbons and G. Hutton, “Proof Methods for Corecursive Programs,” Funda-
menta Informaticae, vol. 66, no. 4, 2005.

K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs,” in Proceedings of the International Conference on Functional
Programming, 2000.

J. Gibbons and R. Hinze, “Just Do It: Simple Monadic Equational Reasoning,” in
Proceedings of the International Conference on Functional Programming, 2011.
G. Hutton and J. Wright, “Compiling Exceptions Correctly,” in Proceedings of the
Conference on Mathematics of Program Construction. Springer, 2004.

P. Wadler, “The Concatenate Vanishes,” 1989, University of Glasgow.

P. Bahr and G. Hutton, “Calculating Correct Compilers,” Journal of Functional
Programming, vol. 25, 2015.

G. Hutton and P. Bahr, “Cutting Out Continuations,” in Proceedings of Wadler-
Fest, A List of Successes That Can Change the World. Springer, 2016.



