
Bibliography

[1] Philip S. Abrams. An APL machine. PhD thesis, Stanford University, Stanford, CA, Febru
ary 1970. (Technical Report SLAC-R-114, Stanford Linear Accelerator Center, Stanford 
University, February 1970.)

[2] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code generation using 
tree matching and dynamic programming. ACM Transactions on Programming Lan
guages and Systems, 11 (4):491-516, October 1989.

[3] Alfred V. Aho, lohn E. Hopcroft, and leffrey D. Ullman. On finding lowest common 
ancestors in trees. In Conference Record of the Fifth Annual ACM Symposium on Theory 
of Computing (STOC), pages 253-265, May 1973.

[4] Alfred V. Aho, lohn E. Hopcroft, and leffrey D. Ullman. The Design and Analysis of 
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[5] Alfred V. Aho and Stephen C. fohnson. Optimal code generation for expression trees. 
Journal of the ACM, 23(3):488-501, July 1976.

[6] Alfred V. Aho, Stephen C. Johnson, and Jeffrey D. Ullman. Code generation for expres
sions with common subexpressions. In Conference Record of the Third ACM Symposium 
on Principles of Programming Languages, pages 19-31, Atlanta, GA, January 1976.

[7] Alfred V. Aho, Steven C. Johnson, and Jeffrey D. Ullman. Deterministic parsing of 
ambiguous grammars. In Conference Record of the ACM Symposium on Principles of 
Programming Languages, pages 1-21, Boston, MA, October 1973.

[8] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and 
Tools. Addison-Wesley, Reading, MA, 1986.

[9] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling. 
Prentice-Hall, Englewood Cliffs, NJ, 1973.

[10] Philippe Aigrain, Susan L. Graham, Robert R. Henry, Marshall Kirk McKusick, and 
Eduardo Pelegri-Llopart. Experience with a Graham-Glanville style code generator. 
SIGPLAN Notices, 19(6):13-24, June 1984. Proceedings of the ACM SIGPLAN ’84 Symposium 
on Compiler Construction.

[11] Alexander Aiken andAlexandru Nicolau. Optimal loop parallelization. SIGPLAN Notices, 
23(7):308-317, July 1988. Proceedings of the ACM SIGPLAN ’88 Conference on Program
ming Language Design and Implementation.

[12] Frances E. Allen. Program optimization. In Annual Review in Automatic Programming, 
volume 5, pages 239-307. Pergamon Press, Oxford, England, 1969.

703



704 Bibliography

[13] Frances E. Allen. Control flow analysis. SIGPLAN Notices, 5(7): 1-19, July 1970. Proceed
ings of a Symposium on Compiler Optimization.

[14] Frances E. Allen. The history of language processor technology in IBM. IBM Journal of 
Research and Development, 25(5):535-548, September 1981.

[15] Frances E. Allen and John Cocke. A catalogue of optimizing transformations. In 
R. Rustin, editor, Design and Optimization of Compilers, pages 1-30. Prentice-Hall, 
Englewood Cliffs, NJ, June 1972.

[16] Frances E. Allen and John Cocke. Graph-theoretic constructs for program flow analysis. 
Technical Report RC 3923 (17789), IBM Thomas J. Watson Research Center, Yorktown 
Heights, NY, July 1972.

[17] Frances E. Allen and John Cocke. A program data flow analysis procedure. Communi
cations of the ACM, 19(3): 137-147, March 1976.

[18] Frances E. Allen, John Cocke, and Ken Kennedy. Reduction of operator strength. In 
Steven S.Muchnick and Neil D. Jones, editors, Program Flow Analysis: Theory and 
Applications, pages 79-101. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[19] John R. Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures. Mor
gan Kaufmann, San Francisco, CA, October 2001.

[20] Bowen Alpern and Fred B. Schneider. Verifying temporal properties without tempo
ral logic. ACM Transactions on Programming Languages and Systems, 11 (1):147—167, 
January 1989.

[21] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of vari
ables in programs. In Conference Record of the Fifteenth Annual ACM Symposium on 
Principles of Programming Languages, pages 1-11, San Diego, CA, January 1988.

[22] Stephen Alstrup, Dov Harel, Peter W. Lauridsen, and Mikkel Thorup. Dominators in 
linear time. SIAM Journal on Computing, 28(6):2117-2132, June 1999.

[23] Marc A. Auslander and Martin E. Hopkins. An overview of the PL.8 compiler. SIGPLAN 
Notices, 17(6):22-31, June 1982. Proceedings of the ACM SIGPLAN '82 Symposium on 
Compiler Construction.

[24] Andrew Ayers, Robert Gottlieb, and Richard Schooler. Aggressive inlining. SIGPLAN 
Notices, 32(5):134-145, May 1997. Proceedings of the ACM SIGPLAN ’97 Conference on 
Programming Language Design and Implementation.

[25] John W. Backus. The history of Fortran I, II, and III. In Richard L. Wexelblat, editor, 
History of Programming Languages, pages 25-45. Academic Press, New York, NY, 1981.

[26] JohnW. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson, 
D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and R. Nutt. The FORTRAN 
automatic coding system. In Proceedings of the Western Joint Computer Conference, 
pages 188-198, Institute of Radio Engineers, New York, NY, February 1957.

[27] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for 
high-performance computing. ACM Computing Surveys, 26(4):345-420, 1994.

[28] John T. Bagwell, Jr. Local optimizations. SIGPLAN Notices, 5(7):52-66, July 1970. Pro
ceedings of a Symposium on Compiler Optimization.

[29] John Banning. An efficient way to find side effects of procedure calls and aliases of 
variables. In Conference Record of the Sixth Annual ACM Symposium on Principles of 
Programming Languages, pages 29-41, San Antonio, TX, January 1979.



Bibliography 705

[30] William A. Barrett and John D. Couch. Compiler Construction: Theory and Practice. 
Science Research Associates, Inc., Chicago, IL, 1979.

[31] Jeffrey M. Barth. An interprocedural data flow analysis algorithm. In Conference Record 
of the Fourth ACM Symposium on Principles of Programming Languages, pages 119-131, 
Los Angeles, CA, January 1977.

[32] Alan M. Bauer and Harry J. Saal. Does APL really need run-time checking? Software— 
Practice and Experience, 4(2):129-138,1974.

[33] Laszlo A. Belady. A study of replacement algorithms for a virtual storage computer. IBM 
Systems Journal, 5(2):78-101, 1966.

[34] C. Gordon Bell and Allen Newell. Computer Structures: Readings and Examples. 
McGraw-Hill Book Company, New York, NY, 1971.

[35] Peter Bergner, Peter Dahl, David Engebretsen, and MatthewT. O’Keefe. Spill code min
imization via interference region spilling. SIGPLAN Notices, 32(5):287-295, May 1997. 
Proceedings of the ACM SIGPLAN ‘97 Conference on Programming Language Design and 
Implementation.

[36] David Bernstein, Dina Q. Goldin, Martin Charles Golumbic, Hugo Krawczyk, Yishay 
Mansour, Itai Nahshon, and Ron Y. Pinter. Spill code minimization techniques for 
optimizing compilers. SIGPLAN Notices, 24(7):258-263, July 1989. Proceedings of the 
ACM SIGPLAN ‘89 Conference on Programming Language Design and Implementation.

[37] David Bernstein and Michael Rodeh. Global instruction scheduling for superscalar 
machines. SIGPLAN Notices, 26(6):241-255, June 1991. Proceedings of the ACM SIGPLAN 
’91 Conference on Programming Language Design and Implementation.

[38] Robert L. Bernstein. Producing good code for the case statement. Software—Practice 
and Experience, 15(10): 1021—1024, October 1985. •

[39] Andrew Binstock and John Rex. Practical Algorithms for Programmers. Addison-Wesley, 
Reading, MA, 1995.

[40] Peter L. Bird. An implementation of a code generator specification language for table 
driven code generators. SIGPLAN Notices, 17(6):44-55, June 1982. Proceedings of the 
ACM SIGPLAN ’82 Symposium on Compiler Construction.

[41] Rastislav Bodík, Rajiv Gupta, and Mary Lou Soffa. Complete removal of redundant 
expressions. SIGPLAN Notices, 33(5): 1—14, May 1998. Proceedings of the ACM SIGPLAN 
‘98 Conference on Programming Language Design and Implementation.

[42] Hans-Juergen Boehm. Space efficient conservative garbage collection. SIGPLAN 
Notices, 28(6):197-206, June 1993. Proceedings of the ACM SIGPLAN ’93 Conference on 
Programming Language Design and Implementation.

[43] Hans-Juergen Boehm and Alan Demers. Implementing Russell. SIGPLAN Notices, 
21 (7): 186-195, July 1986. Proceedings of the ACM SIGPLAN ’86 Symposium on Compiler 
Construction.

[44] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative envi
ronment. Software—Practice and Experience, 18(9) :807—820, September 1988.

[45] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register alloca
tion and instruction scheduling for RISCS. SIGPLAN Notices, 26(4): 122—131, April 1991. 
Proceedings of the Fourth International Conference on Architectural Support for Pro
gramming Languages and Systems.



706 Bibliography

[46] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, 
Department of Computer Science, Houston, TX, April 1992. (Technical Report TR92- 
183, Computer Science Department, Rice University, 1992.)

[47] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. Practical 
improvements to the construction and destruction of static single assignment form. 
Software—Practice and Experience, 28(8):859-881, July 1998.

[48] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring heuristics 
for register allocation. SIGPLAN Notices, 24(7):275-284, July 1989. Proceedings of the 
ACM SIGPLAN ’89 Conference on Programming Language Design and Implementation.

[49] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Digital computer 
register allocation and code spilling using interference graph coloring. United States 
Patent 5,249,295, March 1993.

[50] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value numbering. Software— 
Practice and Experience, 27(6) :701-724, June 1997.

[51] Preston Briggs, Keith D. Cooper, and Linda Torczon. Coloring register pairs. ACM Letters 
on Programming Languages and Systems, 1 (1) :3—13, March 1992.

[52] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. SIGPLAN 
Notices, 27(7):311-321, July 1992. Proceedings of the ACM SIGPLAN ’92 Conference on 
Programming Language Design and Implementation.

[53] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph color
ing register allocation. ACM Transactions on Programming Languages and Systems, 
16(3):428-455, May 1994.

[54] Preston Briggs and Linda Torczon. An efficient representation for sparse sets. ACM 
Letters on Programming Languages and Systems, 2 (1—4) :59-69, March-December 1993.

[55] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. Linear
time pointer-machine algorithms for least common ancestors, MST verification, and 
dominators. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com
puting, pages 279-288, Dallas, TX, 1998.

[56] Michael Burke. An interval-based approach to exhaustive and incremental interproce
dural data-flow analysis. ACM Transactions on Programming Languages and Systems, 
12(3):341-395, July 1990.

[57] Michael Burke and Linda Torczon. Interprocedural optimization: Eliminating unnec
essary recompilation. ACM Transactions on Programming Languages and Systems, 
15(3):367-399, July 1993.

[58] Jiazhen Cai and Robert Paige. Using multiset discrimination to solve language pro
cessing problems without hashing. Theoretical Computer Science, 145(1-2): 189-228, 
1995.

[59] Brad Calder and Dirk Grunwald. Reducing branch costs via branch alignment. 
SIGPLAN Notices, 29(11): 242-251, November 1994. Proceedings of the Sixth Interna
tional Conference on Architectural Support for Programming Languages and Operating 
Systems.

[60] David Callahan, Alan Carle, Mary W. Hall, and Ken Kennedy. Constructing the proce
dure call multigraph. IEEE Transactions on Software Engineering, 16(4):483-487, April 
1990.



Bibliography 707

[61] David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation for sub
scripted variables. SIGPLAN Notices, 25(6):53—65, June 1990. Proceedings of the ACM 
SIGPLAN ‘90 Conference on Programming Language Design and Implementation.

[62] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural 
constant propagation. SIGPLAN Notices, 21(7):152-161, July 1986. Proceedings of the 
ACM SIGPLAN ‘86 Symposium on Compiler Construction.

[63] David Callahan and Brian Koblenz. Register allocation via hierarchical graph color
ing. SIGPLAN Notices, 26(6):192-203, June 1991. Proceedings of the ACM SIGPLAN ‘91 
Conference on Programming Language Design and Implementation.

[64] Luca Cardelli. Type systems. In Allen B. Tucker, Jr., editor, The Computer Science and 
Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, Boca Raton, FL, 
December 1996.

[65] Steve Carrand Ken Kennedy. Scalar replacement in the presence of conditional control 
flow. Software—Practice and Experience, 24(l):51-77, 1994.

[66] Roderic G. G. Cattell. Automatic derivation of code generators from machine descrip
tions. ACM Transactions on Programming Languages and Systems, 2(2):173-190, April 
1980.

[67] Roderic G. G. Cattell, Joseph M. Newcomer, and Bruce W. Leverett. Code generation 
in a machine-independent compiler. SIGPLAN Notices, 14(8):65-75, August 1979. Pro
ceedings of the ACM SIGPLAN 79 Symposium on Compiler Construction.

[68] Gregory J. Chaitin. Register allocation and spilling via graph coloring. SIGPLAN Notices, 
17(6):98-105, June 1982. Proceedings of the ACM SIGPLAN ‘82 Symposium on Compiler 
Construction.

[69] Gregory J. Chaitin. Register allocation and spilling via graph coloring. United States 
Patent 4,571,678, February 1986.

[70] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hop
kins, and Peter W. Markstein. Register allocation via coloring. Computer Languages, 
6(l):47-57, January 1981.

[71] David R. Chase. An improvement to bottom-up tree pattern matching. In Conference 
Record of the Fourteenth Annual ACM Symposium on Principles of Programming Lan
guages, pages 168-177, Munich, Germany, January 1987.

[72] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and struc
tures. SIGPLAN Notices, 25(6):296-310, June 1990. Proceedings of the ACM SLGPLAN '90 
Conference on Programming Language Design and Lmplementation.

[73] J. Bradley Chen and Bradley D. D. Leupen. Improving instruction locality with just
in-time code layout. In Proceedings of the First USENLX Windows NT Workshop, pages 
25-32, Seattle, WA, August 1997.

[74] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM, 
13(ll):677-678, November 1970.

[75] Jong-Deok Choi, Michael Burke, and Paul R.Carini. Efficient flow-sensitive interproce
dural computation of pointer-induced aliases and side effects. In Conference Record of 
the Twentieth Annual ACM Symposium on Principles of Programming Languages, pages 
232-245, Charleston, SC, January 1993.



708 Bibliography

[76] Frederick C. Chow. A Portable Machine-Independent Global Optimizer —Design and 
Measurements. PhD thesis, Department of Electrical Engineering, Stanford University, 
Stanford, CA, December 1983. (Technical Report CSL-TR-83-254, Computer Systems 
Laboratory, Stanford University, December 1983.)

[77] Frederick C. Chow and John L. Hennessy. Register allocation by priority-based col
oring. SIGPLAN Notices, 19(6):222-232, June 1984. Proceedings of the ACM SIGPLAN ’84 
Symposium on Compiler Construction.

[78] Frederick C. Chow and John L. Hennessy. The priority-based coloring approach to reg
ister allocation. ACM Transactions on Programming Languages and Systems, 12(4) :501- 
536, October 1990.

[79] Cliff Click. Combining Analyses, Combining Optimizations. PhD thesis, Rice University, 
Department of Computer Science, Houston, TX, February 1995. (Technical Report 
TR95-252, Computer Science Department, Rice University, 1995.)

[80] Cliff Click. Global code motion/global value numbering. SIGPLAN Notices, 30(6):246- 
257, June 1995. Proceedings of the ACM SIGPLAN ’95 Conference on Programming Lan
guage Design and Implementation.

[81] Cliff Click and Keith D. Cooper. Combining analyses, combining optimizations. ACM 
Transactions on Programming Languages and Systems, 17(2): 181-196, 1995.

[82] John Cocke. Global common subexpression elimination. SIGPLAN Notices, 5(7):20-24, 
July 1970. Proceedings of a Symposium on Compiler Construction.

[83] John Cocke and Ken Kennedy. An algorithm for reduction of operator strength. Com
munications of the ACM, 20(11):850-856, November 1977.

[84] John Cocke and Peter W. Markstein. Measurement of program improvement algo
rithms. In Simon H. Lavington, editor, Information Processing 80, North Holland, Ams
terdam, Netherlands, pages 221-228,1980, Proceedings of IFIP Congress 80.

[85] John Cocke and Peter W. Markstein. Strength reduction for division and modulo with 
application to accessing a multilevel store. IBM Journal of Research and Development, 
24(6):692-694, 1980.

[86] John Cocke and Jacob T. Schwartz. Programming languages and their compilers: Pre
liminary notes. Technical report, Courant Institute of Mathematical Sciences, New York 
University, New York, NY, 1970.

[87] Jacques Cohen. Garbage collection of linked structures. ACM Computing Surveys, 
13(3):341-367, September 1981.

[88] Robert Cohn and P. Geoffrey Lowney. Hot cold optimization of large Windows/NT 
applications. In Proceedings of the Twenty-Ninth Annual International Symposium on 
Microarchitecture, pages 80-89, Paris, France, December 1996.

[89] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache organi
zation and data layout. SIGPLAN Notices, 30(6):279-290, June 1995. Proceedings of the 
ACM SIGPLAN ’95 Conference on Programming Language Design and Implementation.

[90] George E. Collins. A method for overlapping and erasure of lists. Communications of 
theACM, 3(12):655-657, December 1960.

[91] Melvin E. Conway. Design ofa separable transition diagram compiler. Communications 
of the ACM, 6(7):396-408, July 1963.



Bibliography 709

[92] Richard W. Conway and Thomas R. Wilcox. Design and implementation of a diagnostic 
compiler for PL/I. Communications of the ACM, 16(3): 169-179, March 1973.

[93] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with inline substi
tution. Software—Practice and Experience, 21(6):581-601, June 1991.

[94] Keith D. Cooper, Timothy J. Harvey, and Linda Torczon. How to build an interference 
graph. Software—Practice and Experience, 28(4):425-444, April 1998.

[95] Keith D. Cooper, Timothy J. Harvey, and Todd Waterman. Building a control-flow graph 
from scheduled assembly code. Technical Report 02-399, Department of Computer 
Science, Rice University, Houston, TX, June 2002.

[96] Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis in linear time. 
SIGPLAN Notices, 23(7):57-66, July 1988. Proceedings of the ACM SIGPLAN ‘88 Conference 
on Programming Language Design and Implementation.

[97] Keith D. Cooper and Ken Kennedy. Fast interprocedural alias analysis. In Conference 
Record of the Sixteenth Annual ACM Symposium on Principles of Programming Lan
guages, pages 49-59, Austin, TX, January 1989.

[98] Keith D. Cooper and Philip J. Schielke. Non-local instruction scheduling with limited 
code growth. In Proceedings of the 1998 ACM SIGPLAN Workshop on Languages, Com
pilers, and Tools for Embedded Systems (LCTES). Lecture Notes in Computer Science 
14 74, F. Mueller and A. Bestavros, editors, pages 193-207, Springer-Verlag, Heidelberg, 
Germany, 1998.

[99] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced 
code space using genetic algorithms. SIGPLAN Notices, 34(7): 1-9, July 1999. Proceedings 
of the ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded 
Systems (LCTES), May 1999.

[100] Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring register 
allocator. In Proceedings of the Seventh International Compiler Construction Confer
ence, CC ‘98. Lecture Notes in Computer Science 1383, pages 174-187, Springer-Verlag, 
Heidelberg, Germany, 1998.

[101] Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. Operator strength 
reduction. ACM Transactions on Programming Languages and Systems, 23(5):603-625, 
September 2001.

[102] Keith D. Cooper and Todd Waterman. Understanding energy consumption on the 
C62x. In Proceedings of the 2002 Workshop on Compilers and Operating Systems for 
Low Power, pages 4-1 - 4-8, Charlottesville, VA, September 2002.

[103] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo
rithms. MIT Press, Cambridge, MA, 1992.

[104] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth 
Zadeck. Efficiently computing static single assignment form and the control depen
dence graph. ACM Transactions on Programming Languages and Systems, 13(4):451- 
490, October 1991.

[105] Ron Cytron, Andy Lowry, and F. Kenneth Zadeck. Code motion of control structures 
in high-level languages. In Conference Record of the Thirteenth Annual ACM Sympo
sium on Principles of Programming Languages, pages 70-85, St. Petersburg Beach, FL, 
January 1986.



710 Bibliography

[106] Manuvir Das. Unification-based pointer analysis with directional assignments. SIG
PLAN Notices, 35 (5) :35—46, May 2000. In Proceedings of the ACM SIGPLAN ‘00 Conference 
on Programming Language Design and Implementation.

[107] Jack W. Davidson and Christopher W. Fraser. The design and application of a retar
getable peephole optimizer. ACM Transactions on Programming Languages and Sys
tems, 2(2):191-202, April 1980.

[108] Jack W. Davidson and Christopher W. Fraser. Automatic generation of peephole opti
mizations. SIGPLAN Notices, 19(6):111-116, June 1984. Proceedings of the ACM SIGPLAN 
’84 Symposium on Compiler Construction.

[109] Jack W. Davidson and Christopher W. Fraser. Register allocation and exhaustive peep
hole optimization. Software—Practice and Experience, 14(9):857-865, September 1984.

[110] Jack W. Davidson and Christopher W. Fraser. Automatic inference and fast interpre
tation of peephole optimization rules. Software—Practice and Experience, 17(11):801- 
812, November 1987.

[111] JackW. Davidson and Ann M. Holler. A study of a C function inliner. Software—Practice 
and Experience, 18(8):775-790, August 1988.

[112] Alan J. Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and Scott 
Shenker. Combining generational and conservative garbage collection: Framework 
and implementations. In Conference Record of the Seventeenth Annual ACM Symposium 
on Principles of Programming Languages, pages 261-269, San Francisco, CA, January 
1990.

[113] Frank DeRemer. Simple LR(k) grammars. Communications of the ACM, 14(7):453-460, 
July 1971.

[114] Frank DeRemer and Thomas J. Pennello. Efficient computation of LALR (1) look-ahead 
sets. SIGPLAN Notices, 14(8): 176-187, August 1979. Proceedings of the ACM SIGPLAN 79 
Symposium on Compiler Construction.

[115] Alain Deutsch. Interprocedural May-Alias analysis for pointers: Beyond k-limiting. SIG
PLAN Notices, 29(6):230-241, June 1994. Proceedings of the ACM SIGPLAN ‘94 Conference 
on Programming Language Design and Implementation.

[116] L. Peter Deutsch. An Interactive Program Verifier. PhD thesis, Computer Science 
Department, University of California, Berkeley, Berkeley, CA, 1973. (Technical Report 
CSL-73-1, Xerox Palo Alto Research, May 1973.)

[117] L. Peter Deutsch and Daniel G Bobrow. An efficient, incremental, automatic, garbage 
collector. Communications of the ACM, 19(9):522-526, September 1976.

[118] Dhananjay M. Dhamdhere. On algorithms for operator strength reduction. Commu
nications of the ACM, 22(5) :311-312, May 1979.

[119] Dhananjay M. Dhamdhere. A fast algorithm for code movement optimisation. SIGPLAN 
Notices, 23(10):172-180, 1988. ■

[120] Dhananjay M. Dhamdhere. A new algorithm for composite hoisting and strength 
reduction. International Journal of Computer Mathematics, 27(1):1-14, 1989.

[121] Dhananjay M. Dhamdhere. Practical adaptation of the global optimization algorithm 
of Morel and Renvoise. ACM Transactions on Programming Languages and Systems, 
13(2):291-294, April 1991.



Bibliography 711

[122] Michael K. Donegan, Robert E. Noonan, and Stefan Feyock. A code generator generator 
language. SIGPLAN Notices, 14(8):58-64, August 1979. Proceedings of the ACM SIGPLAN 
79 Symposium on Compiler Construction.

[123] Jack J. Dongarra, James R. Bunch, Cleve B. Moler, and G. W. Stewart. LINPACK User's 
Guide. SIAM, Philadelphia, PA, 1979.

[124] Karl-Heinz Drechsler and Manfred P. Stadel. A solution to a problem with Morel and 
Renvoise’s “Global optimization by suppression of partial redundancies.” ACM Trans
actions on Programming Languages and Systems, 10(4):635-640, October 1988.

[125] Karl-Heinz Drechsler and Manfred P. Stadel. A variation of Knoop, Ruthing, and Stef
fen’s “Lazy code motion.” SIGPLAN Notices, 28(5):29-38, May 1993.

[126] Jay Earley. An efficient context-free parsing algorithm. Communications of the ACM, 
13(2):94-102, February 1970.

[127] Kemal Ebcioglu and Toshio Nakatani. A new compilation technique for parallelizing 
loops with unpredictable branches on a VLIW architecture. Selected Papers of the Second 
Workshop on Languages and Compilers for Parallel Computing, Pitman Publishing, 
London, UK, pages 213-229, 1990.

[128] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press, Cambridge, 
MA, 1986.

[129] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interpro
cedural points-to analysis in the presence of function pointers. SIGPLAN Notices, 
29(6):242-256, June 1994. Proceedings of the ACM SIGPLAN '94 Conference on Program
ming Language Design and Implementation.

[130] Jens Ernst, William S. Evans, Christopher W. Fraser, Steven Lucco, and Todd A. Proebst- 
ing. Code compression. SIGPLAN Notices, 32(5) :358-365, May 1997. In Proceedings of the 
ACM SIGPLAN '97 Conference on Programming Language Design and Implementation.

[131] Andrei P. Ershov. On programming of arithmetic expressions. Communications of the 
ACM, l(8):3-6, August 1958. (The figures appear in volume 1, number 9, page 16.)

[132] Andrei P. Ershov. Reduction of the problem of memory allocation in programming to 
the problem of coloring the vertices of graphs. Soviet Mathematics, 3:163-165, 1962. 
Originally published in Doklady Akademii Nauk S.S.S.R., 142(4), 1962.

[133] Andrei P. Ershov. Alpha—An automatic programming system of high efficiency. Journal 
oftheACM, 13(l):17-24, January 1966.

[134] Janet Fabri. Automatic storage optimization. SIGPLAN Notices, 14(8):83-91, August 
1979. Proceedings of the ACM SIGPLAN '79 Symposium on Compiler Construction.

[135] Rodney Farrow. Linguist-86: Yet another translator writing system based on attribute 
grammars. SIGPLAN Notices, 17(6):160-171, June 1982. Proceedings oftheACM SIGPLAN 
'82 Symposium on Compiler Construction.

[136] Rodney Farrow. Automatic generation of fixed-point-finding evaluators for circular, but 
well-defined, attribute grammars. SIGPLAN Notices, 21(7):85-98, July 1986. Proceedings 
of the ACM SIGPLAN '86 Symposium on Compiler Construction.

[137] Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector for virtual
memory computer systems. Communications of the ACM, 12(11):611-612, November 
1969.



712 Bibliography

[138] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph 
and its use in optimization. ACM Transactions on Programming Languages and Systems, 
9(3):319-349, July 1987.

[139] Charles N. Fischer and Richard J. LeBlanc, Jr. The implementation of run-time diag
nostics in Pascal. IEEE Transactions on Software Engineering, SE-6(4):313-319, 1980.

[140] Charles N. Fischer and Richard J. LeBlanc, Jr. Crafting a Compiler with C. Ben- 
jamin/Cummings, Redwood City, CA, 1991.

[141] Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE 
Transactions on Computers, C-30(7):478-490, July 1981.

[142] Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandru Nicolau. Parallel 
processing: A smart compiler and a dumb machine. SIGPLAN Notices, 19(6):37-47, June 
1984. Proceedings of the ACM SIGPLAN ‘84 Symposium on Compiler Construction.

[143] Robert W. Floyd. An algorithm for coding efficient arithmetic expressions. Communi
cations of the ACM, 4(1):42-51, January 1961.

[144] J. M. Foster. A syntax improving program. Computer Journal, 11(1): 31-34, May 1968.
[145] Christopher W. Fraser. Automatic inference of models for statistical code compres

sion. SIGPLAN Notices, 34(5):242-246, May 1999. In Proceedings of the ACM SIGPLAN ‘99 
Conference on Programming Language Design and Implementation.

[146] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a sim
ple, efficient code generator generator. ACM Letters on Programming Languages and 
Systems, 1 (3):213-226, September 1992.

[147] Christopher W. Fraser and Robert R. Henry. Hard-coding bottom-up code generation 
tables to save time and space. Software—Practice and Experience, 21(1):1-12, January 
1991.

[148] Christopher W. Fraser, Eugene W. Myers, and Alan L. Wendt. Analyzing and compress
ing assembly code. SIGPLAN Notices, 19(6):117-121, June 1984. Proceedings of the ACM 
SIGPLAN ’84 Symposium on Compiler Construction.

[149] Christopher W. Fraser and Alan L. Wendt. Integrating code generation and optimiza
tion. SIGPLAN Notices, 21(7):242-248, July 1986. Proceedings of the ACM SIGPLAN ’86 
Symposium on Compiler Construction.

[150] Christopher W. Fraser and Alan L. Wendt. Automatic generation of fast optimizing code 
generators. SIGPLAN Notices, 23(7):79-84, July 1988. Proceedings of the ACM SIGPLAN ’88 
Conference on Programming Language Design and Implementation.

[151] Mahadevan Ganapathi and Charles N. Fischer. Description-driven code generation 
using attribute grammars. In Conference Record of the Ninth Annual ACM Symposium 
on Principles of Programming Languages, pages 108-119, Albuquerque, NM, January 
1982.

[152] Harald Ganzinger, Robert Giegerich, Ulrich Moncke, and Reinhard Wilhelm. A truly 
generative semantics-directed compiler generator. SIGPLAN Notices, 17(6):172-184, 
June 1982. Proceedings of the ACM SIGPLAN ’82 Symposium on Compiler Construction.

[153] Lal George and Andrew W. Appel. Iterated register coalescing. In Conference Record 
of the Twenty-Third ACM Symposium on Principles of Programming Languages, pages 
208-218, St. Petersburg Beach, FL, January 1996.



Bibliography 713

[154] Phillip B. Gibbons and Steven S. Muchnick. Efficient instruction scheduling for a 
pipelined architecture. SIGPLAN Notices, 21 (7): 11-16, July 1986. Proceedings of the ACM 
SIGPLAN ’86 Symposium on Compiler Construction.

[155] R. Steven Glanville and Susan L. Graham. A new method for compiler code generation. 
In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming 
Languages, pages 231-240, Tucson, AZ, January 1978.

[156] Nikolas Gloy and Michael D. Smith. Procedure placement using temporal-ordering 
information. ACM Transactions on Programming Languages and Systems, 21(5):997- 
1027, September 1999.

[157] Adele Goldberg and David Robson. Smalltalk-80: The Language and Lts Implementa
tion. Addison-Wesley, Reading, MA, 1983.

[158] James R. Goodman and Wei-Chung Hsu. Code scheduling and register allocation in 
large basic blocks. Proceedings of the Second International Conference on Supercom
puting, pages 442-452, July 1988.

[159] Eiichi Goto. Monocopy and associative operations in extended Lisp. Technical Report 
74-03, University of Tokyo, Tokyo, Japan, May 1974.

[160] Susan L. Graham. Table-driven code generation. IEEE Computer, 13(8):25-34, August 
1980.

[161] Susan L. Graham, Michael A. Harrison, and Walter L. Ruzzo. An improved context-free 
recognizer. ACM Transactions on Programming Languages and Systems, 2(3):415-462, 
July 1980.

[162] Susan L. Graham, Robert R. Henry, and Robert A. Schulman. An experiment in table 
driven code generation. SIGPLAN Notices, 17(6):32-43, June 1982. Proceedings of the 
ACM SIGPLAN ’82 Symposium on Compiler Construction.

[163] Susan L. Graham and Mark Wegman. A fast and usually linear algorithm for global 
flow analysis. In Conference Record of the Second ACM Symposium on Principles of 
Programming Languages, pages 22-34, Palo Alto, CA, January 1975.

[164] Susan L. Graham and Mark Wegman. A fast and usually linear algorithm for global flow 
analysis. Journal of the ACM, 23(1):172-2O2, 1976.

[165] Torbjörn Granlund and Richard Kenner. Eliminating branches using a superoptimizer 
and the GNU C compiler. SIGPIAN Notices, 27(7):341-352, July 1992. Proceedings of the 
ACM SIGPIAN ’92 Conference on Programming Language Design and Implementation.

[166] David Gries. Compiler Construction for Digital Computers. John Wiley and Sons, New 
York, NY, 1971.

[167] Rajiv Gupta and Mary Lou Soffa. Region scheduling: An approach for detecting and 
redistributing parallelism. IEEE Transactions on Software Engineering, 16(4):421-431, 
April 1990.

[168] Rajiv Gupta, Mary Lou Soffa, and Tim Steele. Register allocation via clique separators. 
SIGPIAN Notices, 24 (7) :264-274, July 1989. Proceedings of the ACM SIGPIAN ’89 Confer
ence on Programming Language Design and Implementation.

[169] Max Hailperin. Cost-optimal code motion. ACM Transactions on Programming Lan
guagesand Systems, 20(6):1297-1322, November 1998. •

[170] Mary W. Hall and Ken Kennedy. Efficient call graph analysis. ACM Letters on Program
ming Languages and Systems, l(3):227-242, September 1992.



714 Bibliography

[171] David R. Hanson. Fast allocation and deallocation of memory based on object lifetimes. 
Software—Practice and Experience, 20(l):5-12, January 1990.

[172] Dov Harel. A linear time algorithm for finding dominators in flow graphs and related 
problems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of 
Computing (STOC), pages 185-194, May 1985.

[173] William H. Harrison. A class of register allocation algorithms. Technical Report RC- 
5342, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975.

[174] William H. Harrison. A new strategy for code generation—The general purpose opti
mizing compiler. IEEE Transactions on Software Engineering, SE-5(4):367-373, July 
1979.

[175] Philip J. Hatcher and Thomas W. Christopher. High-quality code generation via 
bottom-up tree pattern matching. In Conference Record of the Thirteenth Annual ACM 
Symposium on Principles of Programming Languages, pages 119-130, St. Petersburg 
Beach, FL, January 1986.

[176] Matthew S. Hecht and Jeffrey D. Ullman. Characterizations of reducible flow graphs. 
Journal of the ACM, 21(3):367-375, July 1974.

[177] Matthew S. Hecht and Jeffrey D. Ullman. A simple algorithm for global data flow anal
ysis problems. SIAM Journal on Computing, 4(4):519-532, 1975.

[178] J. Heller. Sequencing aspects of multiprogramming. Journal of the ACM, 8(3):426-439, 
July 1961.

[179] John L. Hennessy and Thomas Gross. Postpass code optimization of pipeline con
straints. ACM Transactions on Programming Languages and Systems, 5(3) :422-448, July 
1983.

[180] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural 
pointer alias analysis. ACM Transactions on Programming Languages and Systems, 
21(4):848-894, July 1999.

[181] Michael Hind and Anthony Pioli. Which pointer analysis should I use? ACM SIGSOFT 
Software Engineering Notes, 25 (5) :113-123, September 2000. In Proceedings of the Inter
national Symposium on Software Testing and Analysis.

[182] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. Journal 
of the ACM, 29(l):68-95, January 1982.

[183] John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In 
Zvi Kohavi and Azaria Paz, editors, Theory of Machines and Computations: Proceedings, 
pages 189-196, Academic Press, New York, NY, 1971.

[184] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, 
and Computation. Addison-Wesley, Reading, MA, 1979.

[185] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Computer 
Science Press, Inc., Potomac, MD, 1978.

[186] Lawrence P. Horwitz, Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. Index 
register allocation. Journal of the ACM, 13(1):43-61, January 1966.

[187] Susan Horwitz, Phil Pfeiffer, and Thomas Reps. Dependence analysis for pointer vari
ables. SIGPLAN Notices, 24(7) :28-40, July 1989. Proceedings of the ACM SIGPLAN '89 Con
ference on Programming Language Design and Implementation.



Bibliography 715

[188] Susan Horwitz and Tim Teitelbaum. Generating editing environments based on rela
tions and attributes. ACM Transactions on Programming Languages and Systems, 
8(4):577-608, October 1986.

[189] Brett L. Huber. Path-selection heuristics for dominator-path scheduling. Master’s the
sis, Computer Science Department, Michigan Technological University, Houghton, MI, 
October 1995.

[190] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter, 
Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. 
Haab, John G. Holm, and Daniel M. Lavery. The superblock: An effective technique 
for VLIW and superscalar compilation. Journal of Supercomputing—Special Issue on 
Instruction Level Parallelism, 7(1-2): 229-248, Kluwer Academic Publishers, Hingham, 
MA, May 1993.

[191] Edgar T. Irons. A syntax directed compiler for Algol 60. Communications of the ACM, 
4(1):51-55, January 1961.

[192] J. R. Isaac and Dhananjay M. Dhamdhere. A composite algorithm for strength reduction 
and code movement optimization. International Journal of Computerand Information 
Sciences, 9(3):243-273, June 1980.

[193] Mehdi Jazayeri and Kenneth G. Walter. Alternating semantic evaluator. In Proceedings 
of the 1975 Annual Conference of the ACM, pages 230-234, 1975.

[194] Mark Scott Johnson and Terrence C. Miller. Effectiveness of a machine-level, global 
optimizer. SIGPLAN Notices, 21(7):99-108, July 1986. Proceedings of the ACM SIGPLAN ‘86 
Symposium on Compiler Construction.

[195] Stephen C. Johnson. Yacc—Yet another compiler-compiler. Technical Report 32 (Com
puting Science), AT&T Bell Laboratories, Murray Hill, NJ, 1975.

[196] Stephen C. Johnson. A tour through the portable C compiler. In Unix Programmer’s 
Manual, 7th Edition, volume 2b. AT&T Bell Laboratories, Murray Hill, NJ, January 1979.

[197] Walter L. Johnson, James H. Porter, Stephanie I. Ackley, and Douglas T. Ross. Automatic 
generation of efficient lexical processors using finite state techniques. Communica
tions of the ACM, 11(12):8O5-813, December 1968.

[198] S. M. Joshi and Dhananjay M. Dhamdhere. A composite hoisting-strength reduction 
transformation for global program optimization. International Journal of Computer 
Mathematics, 11(1):21-44 (part I); 11(2): 111-126 (part II), 1982.

[199] John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative algorithms. 
Journal of the ACM, 23(1): 158-171, January 1976.

[200] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks. Acta 
Informatica, 7:305-317, 1977.

[201] Tadao Kasami. An efficient recognition and syntax analysis algorithm for context-free 
languages. Scientific Report AFCRL-65-758, Air Force Cambridge Research Laboratory, 
Bedford, MA, 1965.

[202] Ken Kennedy. Global Flow Analysis and Register Allocation for Simple Code Structures. 
PhD thesis, Courant Institute, New York University, October 1971.

[203] Ken Kennedy. Global dead computation elimination. SELL Newsletter 111, Courant 
Institute of Mathematical Sciences, New York University, New York, NY, August 1973.



716 Bibliography

[204] Ken Kennedy. Reduction in strength using hashed temporaries. SETL Newsletter 102, 
Courant Institute of Mathematical Sciences, New York University, New York, NY, March 
1973.

[205] Ken Kennedy. Node listings applied to data flow analysis. In Conference Record of the 
Second ACM Symposium on Principles of Programming Languages, pages 10-21, Palo 
Alto, CA, January 1975.

[206] Ken Kennedy. Use-definition chains with applications. Computer Languages, 3(3):163- 
179, 1978.

[207] Ken Kennedy. A survey of data flow analysis techniques. In Neil D. Jones and Steven S. 
Muchnick, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, 
Englewood Cliffs, NJ, 1981.

[208] Ken Kennedy and Linda Zucconi. Applications of graph grammar for program control 
flow analysis. In Conference Record of the Fourth ACM Symposium on Principles of 
Programming Languages, pages 72-85, Los Angeles, CA, January 1977.

[209] Robert Kennedy, Fred C. Chow, Peter Dahl, Shin-Ming Liu, Raymond Lo, and Mark 
Streich. Strength reduction via SSAPRE. In Proceedings of the Seventh International 
Conference on Compiler Construction. Lecture Notes in Computer Science 1383, pages 
144-158, Springer-Verlag, Heidelberg, Germany, March 1998.

[210] DanielR. Kerns and Susan J. Eggers. Balanced scheduling: Instruction scheduling when 
memory latency is uncertain. SIGPLAN Notices, 28 (6) :278-289, June 1993. Proceedings 
of the ACM SIGPLAN '93 Conference on Programming Language Design and Implemen
tation.

[211] Robert R. Kessler. Peep—An architectural description driven peephole optimizer. SIG
PLAN Notices, 19(6):106-110, June 1984. Proceedings of the ACM SIGPLAN '84 Symposium 
on Compiler Construction.

[212] Gary A. Kildall. A unified approach to global program optimization. In Conference 
Record of the ACM Symposium on Principles of Programming Languages, pages 194
206, Boston, MA, October 1973.

[213] Stephen C. Kleene. Representation of events in nerve nets and finite automata. In 
Claude E. Shannon and John McCarthy, editors, Automata Studies. Annals of Mathe
matics Studies, 34:3-41. Princeton University Press, Princeton, NJ, 1956.

[214] Kath Knobe and Andrew Meltzer. Control tree based register allocation. Technical 
report, COMPASS, 1990.

[215] Jens Knoop, Oliver Riithing, and Bernhard Steffen. Lazy code motion. SIGPLAN Notices, 
27(7) :224-234, July 1992. Proceedings of the ACM SIGPLAN '92 Conference on Program
ming Language Design and Implementation.

[216] Jens Knoop, Oliver Ruthing, and Bernhard Steffen. Lazy strength reduction. Interna
tionaljournal of Programming Languages, 1 (1):71-91, March 1993.

[217] Donald E. Knuth. On the translation of languages from left to right. Information and 
Control, 8(6):607-639, December 1965.

[218] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 
2(2):127-145, 1968.

[219] Donald E. Knuth. Semantics of context-free languages: Correction. Mathematical Sys
tems Theory, 5(l):95-96, 1971.



Bibliography 717

[220] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, MA, 
1973.

[221] Donald E. Knuth. A history of writing compilers. Computers and Automation, 11(12): 
8-18, December 1962. Reprinted in Compiler Techniques, Bary W. Pollack, editor, pages 
38-56, Auerbach, Princeton, NJ, 1972.

[222] Dexter C. Kozen. Automata and Computability. Springer-Verlag, New York, NY, 1997.
[223] Glenn Krasner, editor. Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley, 

Reading, MA, August 1983.
[224] Sanjay M. Krishnamurthy. A brief survey of papers on scheduling for pipelined proces

sors. SIGPLAN Notices, 25 (7) :97— 106, July 1990.
[225] Steven M. Kurlander and Charles N. Fischer. Zero - cost range splitting. SIGPLAN No tices, 

29(6):257-265, June 1994. Proceedings of the ACM SIGPLAN '94 Conference on Program
ming Language Design and Implementation.

[226] Monica Lam. Software pipelining: An effective scheduling technique for VLIW 
machines. SIGPLAN Notices, 23 (7) :318-328, July 1988. Proceedings of the ACM SIGPLAN 
’88 Conference on Programming Language Design and Implementation.

[227] David Alex Lamb. Construction of a peephole optimizer. Software—Practice and Expe
rience, ll(6):639-647, June 1981.

[228] William Landi and Barbara G. Ryder. Pointer-induced aliasing: A problem taxonomy. 
In Conference Record of the Eighteenth Annual ACM Symposium on Principles of Pro
gramming Languages, pages 93-103, Orlando, FL, January 1991.

[229] David Landskov, Scott Davidson, Bruce Shriver, and Patrick W. Mallett. Local 
microcode compaction techniques. ACM Computing Surveys, 12(3):261-294, Septem
ber 1980.

[230] Rudolf Landwehr, Hans-StephanJansohn, and Gerhard Goos. Experience with an auto
matic code generator generator. SIGPLAN Notices, 17(6):56-66, June 1982. Proceedings 
of the ACM SIGPLAN ’82 Symposium on Compiler Construction.

[231] James R. Larus and Paul N. Hilfinger. Register allocation in the spur Lisp compiler. SIG
PLAN Notices, 21 (7) :255-263, July 1986. Proceedings of the ACM SIGPLAN ’86 Symposium 
on Compiler Construction.

[232] S. S. Lavrov. Store economy in closed operator schemes. Journal of Computational 
Mathematics and Mathematical Physics, 1(4):687-7O1, 1961. English translation in 
U.S.S.R. Computational Mathematics and Mathematical Physics 3:810-828, 1962.

[233] Charles Lefurgy, Peter Bird, I-ChengChen, and Trevor Mudge. Improving code density 
using compression techniques. In Proceedings of the Thirtieth International Sympo
sium on Microarchitecture, pages 194-203, IEEE Computer Society Press, Los Alamitos, 
CA, December 1997.

[234] Charles Lefurgy, Eva Piccininni, and Trevor Mudge. Reducing code size with run
time decompression. In Proceedings of the Sixth International Symposium on High
Performance Computer Architecture, pages 218-227, IEEE Computer Society Press, Los 
Alamitos, CA, January 2000.

[235] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in 
a flowgraph. ACM Transactions on Programming Languages and Systems, 1(1): 121-141, 
July 1979.



718 Bibliography

[236] Philip M. Lewis and Richard E. Stearns. Syntax-directed transduction. Journal of the 
ACM, 15(3):465-488, July 1968.

[237] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer. Evaluation of algo
rithms for local register allocation. In Eighth International Conference on Compiler 
Construction (CC 9 9). Lecture Notes in Computer Science 1575, pages 137-152, Springer
Verlag, Heidelberg, Germany, 1999.

[238] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes 
of objects. Communications of the ACM, 26(6) :419-429, June 1983.

[239] Barbara Liskov, Russell R. Atkinson, Toby Bloom, J. Eliot B. Moss, Craig Schaffert, Robert 
Scheifler, and Alan Snyder. CLU Reference Manual. Lecture Notes in Computer Science 
114, Springer-Verlag, Heidelberg, Germany, 1981.

[240] Jack L. Lo and Susan J. Eggers. Improving balanced scheduling with compiler opti
mizations that increase instruction-level parallelism. SIGPLAN Notices, 30(6): 151—162, 
June 1995. Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language 
Design and Implementation.

[241] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. Register pro
motion by sparse partial redundancy elimination of loads and stores. SIGPLAN Notices, 
33(5):26-37, May 1998. Proceedings of the ACM SIGPLAN ’98 Conference on Programming 
Language Design and Implementation.

[242] P. Geoffrey Lowney, Stefan M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, Robert P. 
Nix, John S. O’Donnell, and John. C. Ruttenberg. The Multiflow trace scheduling com
piler. The Journal of Supercomputing—Special Issue, 7(1-2):51-142, March 1993.

[243] Edward S. Lowry and C. W. Medlock. Object code optimization. Communications of 
the ACM, 12(1): 13-22, January 1969.

[244] John Lu and Keith D. Cooper. Register promotion in C programs. SIGPLAN Notices, 
32(5):308-319, May 1997. Proceedings of the ACM SIGPLAN ’97 Conference on Program
ming Language Design and Implementation.

[245] John Lu and Rob Shillner. Clean: Removing useless control flow. Unpublished. Depart
ment of Computer Science, Rice University, Houston, TX, June 1994.

[246] Peter Lucas. Die strukturanalyse von formelubersetzern. Elektronische Rechenanlagen, 
3:159-167, 1961.

[247] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global register allocation 
based on graph fusion. In Proceedings of the Ninth International Workshop on Lan
guages and Compilers for Parallel Computing (LCPC ’96). Lecture Notes in Computer 
Science 1239, pages 246-265, Springer-Verlag, Heidelberg, Germany, 1997.

[248] Bohdan S. Majewski, Nicholas C. Wormaid, George Havas, and Zbigniew J. Czech. 
A family of perfect hashing methods. The Computer Journal, 39(6):547-554, 1996.

[249] Brian L. Marks. Compilation to compact code. IBM Journal of Research and Develop
ment, 24(6):684-691, November 1980.

[250] Peter W. Markstein, Victoria Markstein, and F. Kenneth Zadeck. Reassociation and 
strength reduction. Unpublished book chapter, July 1994.

[251] Henry Massalin. Superoptimizer—A look at the smallest program. SIGPLAN Notices, 
22(10): 122-126, October 1987. Proceedings of the Second International Conference on 
Architectural Support for Programming Languages and Operating Systems.



Bibliography 719

[252] John McCarthy. Lisp—Notes on its past and future. In Proceedings of the 1980 ACM 
Conference on LISP and Functional Programming, pages v-viii, Stanford University, 
Stanford, CA, 1980.

[253] William M. McKeeman. Peephole optimization. Communications of the ACM, 8(7):443- 
444, July 1965.

[254] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality with 
loop transformations. ACM Transactions on Programming Languages and Systems 
(TOPLAS), 18(4):424-453, July 1996.

[255] Kathryn S. McKinley and Olivier Temam. A quantitative analysis of loop nest locality. 
In Proceedings of the Seventh International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS-7), pages 94-104, Cambridge, 
MA, September 1996.

[256] Robert McNaughton and H. Yamada. Regular expressions and state graphs for 
automata. IRE Transactions on Electronic Computers, EC-9(l):39-47, March 1960.

[257] Terrence C. Miller. Tentative Compilation: A design for an APL compiler. PhD thesis, 
Yale University, New Haven, CT, May 1978. See also paper of same title in Proceedings 
of the International Conference on APL: Part 1, pages 88-95, New York, NY, 1979.

[258] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of 
Standard ML—Revised. MIT Press, Cambridge, MA, 1997.

[259] Etienne Morel and Claude Renvoise. Global optimization by suppression of partial 
redundancies. Communications of the ACM, 22(2):96-103, February 1979.

[260] Robert Morgan. Building an Optimizing Compiler. Digital Press (an imprint of 
Butterworth-Heineman), Boston, MA, February 1998.

[261] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen. Combining regis
ter allocation and instruction scheduling. Technical Report 698, Courant Institute of 
Mathematical Sciences, New York University, New York, NY, July 1995.

[262] Steven S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann, 
San Francisco, CA, August 1997.

[263] Frank Mueller and David B. Whalley. Avoiding unconditional jumps by code replica
tion. SIGPLAN Notices, 27(7):322-330, July 1992. Proceedings of the ACM SIGPLAN '92 
Conference on Programming Language Design and Implementation.

[264] Thomas P. Murtagh. An improved storage management scheme for block structured 
languages. ACM Transactions on Programming Languages and Systems, 13(3):372-398, 
July 1991.

[265] Peter Naur (editor), J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, 
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and 
M. Woodger. Revised report on the algorithmic language Algol 60. Communications of 
the ACM, 6(1):1-17, January 1963.

[266] Brian R. Nickerson. Graph coloring register allocation for processors with multi
register operands. SIGPLAN Notices, 25(6):40-52, June 1990. Proceedings of the ACM 
SIGPLAN ‘90 Conference on Programming Language Design and Implementation.

[267] Cindy Norris and Lori L. Pollock. A scheduler-sensitive global register allocator. In 
Proceedings of Supercomputing ‘93, pages 804-813, Portland, OR, November 1993.



720 Bibliography

[268] Cindy Norris and Lori L. Pollock. An experimental study of several cooperative register 
allocation and instruction scheduling strategies. In Proceedings of the Twenty-Eighth 
Annual International Symposium on Microarchitecture, pages 169-179, IEEE Computer 
Society Press, Los Alamitos, CA, December 1995.

[269] Kristen Nygaard and Ole-Johan Dahl. The development of the simula languages. In Pro
ceedings of the First ACM SIGPLAN Conference on the History of Programming Languages, 
pages 245-272, ACM Press, New York, NY, January 1978.

[270] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In Proceedings of the 
1998 International Conference on Parallel Architecture and Compilation Techniques 
(PACT), pages 196-204, October 1998.

[271] Eduardo Pelegri-Llopart and Susan L. Graham. Optimal code generation for expression 
trees: An application of BURS theory. In Conference Record of the Fifteenth Annual ACM 
Symposium on Principles of Programming Languages, pages 294-308, San Diego, CA, 
January 1988.

[272] Thomas J. Pennello. Very fast LR parsing. SIGPLAN Notices, 21(7):145-151, July 1986. 
Proceedings of the ACM SIGPLAN ‘86 Symposium on Compiler Construction.

[273] Karl Pettis and Robert C. Hansen. Profile guided code positioning. SIGPLAN Notices, 
25(6):16-27, June 1990. Proceedings of the ACM SIGPLAN ‘90 Conference on Programming 
Language Design and Implementation.

[274] ShlomitS. Pinter. Register allocation with instruction scheduling: A new approach. SIG
PLAN Notices, 28(6):248-257, June 1993. Proceedings of the ACM SIGPLAN ‘93 Conference 
on Programming Language Design and Implementation.

[275] Gordon D. Plotkin. Call-by-name, call-by-value, and the X-calculus. Theoretical Com
puter Science, 1 (2): 125—159, December 1975.

[276] Todd A. Proebsting. Simple and efficient BURS table generation. SIGPLAN Notices, 
27(7):331-340, July 1992. Proceedings of the ACM SIGPLAN ‘92 Conference on Program
ming Language Design and Implementation.

[277] Todd A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Con
ference Record of the Twenty-Second ACM Symposium on Principles of Programming 
Languages, pages 322-332, San Francisco, CA, January 1995.

[278] Todd A. Proebsting and Charles N. Fischer. Linear-time, optimal code scheduling for 
delayed-load architectures. SIGPLAN Notices, 26(6): 256-267, June 1991. Proceedings 
of the ACM SIGPLAN ‘91 Conference on Programming Language Design and Implem
entation.

[279] Todd A. Proebsting and Charles N. Fischer. Probabilistic register allocation. SIGPLAN 
Notices, 27(7):300-310, July 1992. Proceedings of the ACM SIGPLAN ‘92 Conference on 
Programming Language Design and Implementation.

[280] Reese T. Prosser. Applications of boolean matrices to the analysis of flow diagrams. 
In Proceedings of the Eastern Joint Computer Conference, pages 133-138, Institute of 
Radio Engineers, New York, NY, December 1959.

[281] Paul W. Purdom, Jr. and Edward F. Moore. Immediate predominators in a directed 
graph [H]. Communications of the ACM, 15(8) :777-778, August 1972.

[282] Brian Randell andL. J. Russell. Algol 60 Programs Implementation; The Translation and 
Use of Algol 60 Programs on a Computer. Academic Press, London, England, 1964.



Bibliography 721

[283] Bob R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable 
horizontal architecture for high performance scientific computing. In Proceedings of 
the Fourteenth Annual Microprogramming Workshop on Microprogramming, pages 
183-198, December 1981.

[284] John H. Reif. Symbolic programming analysis in almost linear time. In Conference 
Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, 
pages 76-83, Tucson, AZ, January 1978.

[285] John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value graph. 
In Conference Record of the Fourth ACM Symposium on Principles of Programming 
Languages, pages 104-118, Los Angeles, CA, January 1977.

[286] Thomas Reps. Optimal-time incremental semantic analysis for syntax-directed editors. 
In Conference Record of the Ninth Annual ACM Symposium on Principles of Program
ming Languages, pages 169-176, Albuquerque, NM, January 1982.

[287] Thomas Reps and Bowen Alpern. Interactive proof checking. In Conference Record of 
the Eleventh Annual ACM Symposium on Principles of Programming Languages, pages 
36-45, Salt Lake City, UT, January 1984.

[288] Thomas Reps and Tim Teitelbaum. The Synthesizer Generator: A System for Construct
ing Language-Based Editors. Springer-Verlag, New York, NY, 1988.

[289] Martin Richards. The portability of the bcpl compiler. Software—Practice and Experi
ence, 1(2):135-146, April-June 1971.

[290] Steve Richardson and Mahadevan Ganapathi. Interprocedural analysis versus proce
dure integration. Information Processing Letters, 32(3): 137-142, August 1989.

[291] Ronald Rivest. On self-organizing sequential search heuristics. Communications of the 
ACM, 19(2):63-67, February 1976.

[292] Anne Rogers and Kai Li. Software support for speculative loads. SIGPLAN Notices, 
27(9):38-50, September 1992. Proceedings of the Fifth International Conference on 
Architectural Support for Programming Languages and Operating Systems.

[293] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and 
redundant computations. In Conference Record of the Fifteenth Annual ACM Sympo
sium on Principles of Programming Languages, pages 12-27, San Diego, CA, January 
1988.

[294] Daniel J. Rosenkrantz and Richard Edwin Stearns. Properties of deterministic top
down grammars. Information and Control, 17(3):226-256, October 1970.

[295] Barbara G. Ryder. Constructing the call graph of a program. IEEE Transactions on Soft
ware Engineering, SE-5(3):216-226, May 1979.

[296] A. V. S. Sastry and Roy D. C. Ju. A new algorithm for scalar register promotion based on 
SSA form. SIGPLAN Notices, 33(5): 15-25, May 1998. Proceedings of the ACM SIGPLAN ’98 
Conference on Programming Language Design and Implementation.

[297] Randolph G. Scarborough and Harwood G. Kolsky. Improved optimization of FORTRAN 
object programs. IBM Journal of Research and Development, 24(6):660-676, November 
1980.

[298] Philip J. Schielke. Stochastic Instruction Scheduling. PhD thesis, Rice University, 
Department of Computer Science, Houston, TX, May 2000. (Technical Report TR00- 
370, Computer Science Department, Rice University, 2000.)



722 Bibliography

[299] Herb Schorr and William M. Waite. An efficient machine-independent procedure for 
garbage collection in various list structures. Communications of the ACM, 10(8):501- 
506, August 1967.

[300] Jacob T. Schwartz. On programming: An interim report on the SETL project. Installment 
II: The SETL language and examples of its use. Technical report, Courant Institute of 
Mathematical Sciences, New York University, New York, NY, October 1973.

[301] Ravi Sethi and Jeffrey D. Ullman. The generation of optimal code for arithmetic expres
sions. Journal of the ACM, 17(4) :715-728, October 1970.

[302] Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-to analysis. 
In Conference Record of the Twenty-Fourth ACM Symposium on Principles of Program
ming Languages, pages 1-14, Paris, France, January 1997.

[303] Robert M. Shapiro and Harry Saint. The representation of algorithms. Technical Report 
CA-7002-1432, Massachusetts Computer Associates, February 1970.

[304] Peter B. Sheridan. The arithmetic translator-compiler of the IBM FORTRAN automatic 
coding system. Communications of the ACM, 2(2) :9-21, February 1959.

[305] Olin Shivers. Control flow analysis in Scheme. SIGPLAN Notices, 23(7):164-174, July 
1988. Proceedings of the ACM SIGPLAN ‘88 Conference on Programming Language Design 
and Implementation.

[306] L. Taylor Simpson. Value-Driven Redundancy Elimination. PhD thesis, Rice University, 
Department of Computer Science, Houston, TX, 1996.(Technical Report TR 96-308, 
Computer Science Department, Rice University, 1996.)

[307] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Co., Boston, 
MA, December 1996.

[308] Richard L. Sites and Daniel R. Perkins. Universal P-code definition, version 0.2. Tech
nical Report 78-CS-C29, Department of Applied Physics and Information Sciences, 
University of California at San Diego, San Diego, CA, January 1979.

[309] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update 
and paging rules. Communications of the ACM, 28(2): 202-208, February 1985.

[310] Michael D. Smith, Mark Horowitz, and Monica S. Lam. Efficient superscalar perfor
mance through boosting. SIGPLAN Notices, 27(9): 248-259, September 1992. Proceed
ings of the Fifth International Conference on Architectural Support for Programming 
Languages and Operating Systems.

[311] Mark Smotherman, Sanjay M. Krishnamurthy, P. S. Aravind, and David Hunnicutt. 
Efficient DAG construction and heuristic calculation for instruction scheduling. In 
Proceedings of the Twenty-Fourth Annual Workshop on Microarchitecture (MICRO-24), 
pages 93-102, Albuquerque, NM, August 1991.

[312] Arthur Sorkin. Some comments on "A solution to a problem with Morel and Renvoise’s 
‘Global optimization by suppression of partial redundancies.’ ” ACM Transactions on 
Programming Languages and Systems, ll(4):666-668, October 1989.

[313] Thomas C. Spillman. Exposing side-effects in a PL/1 optimizing compiler. In Infor
mation Processing 71, pages 376-381. North-Holland, Amsterdam, Netherlands, 1972. 
Proceedings ofIFIP Congress 71.

[314] Guy Lewis Steele, Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, MH 
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 
MA, May 1978.



Bibliography 723

[315] Philip H. Sweany and Steven J. Beaty. Post-compaction register assignment in a retar
getable compiler. In Proceedings of the Twenty- Third Annual Workshop and Symposium 
on Microprogramming and Microarchitecture (MICRO-23), pages 107-116, Orlando, FL, 
November 1990.

[316] Philip H. Sweany and Steven J. Beaty. Dominator-path scheduling—A global schedul
ing method. ACM SIGMICRO Newsletter, 23(1-2): 260-263, December 1992. Proceedings 
of the Twenty-Fifth Annual International Symposium on Microarchitecture.

[317] Robert Endre Tarjan. Testing flow graph reducibility. Journal of Computer and System 
Sciences, 9(3):355-365, December 1974.

[318] Robert Endre Tarjan. Fast algorithms for solving path problems. Journal of the ACM, 
28(3):594-614, July 1981.

[319] Robert Endre Tarjan. A unified approach to path problems. Journal of the ACM, 
28(3):577-593, July 1981.

[320] Robert Endre Tarjan and John H. Reif. Symbolic program analysis in almost-linear time. 
SIAM Journal on Computing, 11 (1):81—93, February 1982.

[321] Ken Thompson. Programming Techniques: Regular expression search algorithm. Com
munications of the ACM, 11 (6) :419-422, 1968.

[322] Steven W. K. Tjiang. twig reference manual. Technical Report CSTR 120, Computing 
Sciences, AT&T Bell Laboratories, Murray Hill, NJ, January 1986.

[323] Jeffrey D. Ullman. Fast algorithms for the elimination of common subexpressions. Act« 
Informatica, 2(3):191-213,1973.

[324] David Ungar. Generation scavenging: A non-disruptive high performance storage 
reclamation algorithm. ACM SIGSOFT Software Engineering Notes, 9(3): 157-167, May 
1984. Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium 
on Practical Software Development Environments.

[325] Victor Vyssotsky and Peter Wegner. A graph theoretical FORTRAN source language ana
lyzer. Manuscript, AT&T Bell Laboratories, Murray Hill, NJ, 1963.

[326] William Waite and Gerhard Goos. Compiler Construction. Springer-Verlag, New York, 
NY, 1984.

[327] Scott Kipling Warren. The Coroutine Model of Attribute Grammar Evaluation. PhD 
thesis, Department of Mathematical Sciences, Rice University, Houston, TX, April 1976.

[328] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional 
branches. In Conference Record of the Twelfth Annual ACM Symposium on Principles of 
Programming Languages, pages 291-299, New Orleans, LA, January 1985.

[329] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional 
branches. ACM Transactions on Programming Languages and Systems, 13(2):181-210, 
April 1991.

[330] William E. Weihl. Interprocedural data flow analysis in the presence of pointers, pro
cedure variables, and label variables. In Conference Record of the Seventh Annual ACM 
Symposium on Principles of Programming Languages, pages 83-94, Las Vegas, NV, Jan
uary 1980.

[331] Clark Wiedmann. Steps toward an APL compiler. ACM SIGAPL APL Quote Quad, 9(4):321- 
328, June 1979. Proceedings of the International Conference on APL.



724 Bibliography

[332] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of the Inter
national Workshop on Memory Management. Lecture Notes in Computer Science 637, 
pages 1-42, Springer-Verlag, Heidelberg, Germany, 1992.

[333] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis for C 
programs. SIGPLAN Notices, 3O(6):1-12, June 1995. Proceedings of the ACM SIGPLAN ’95 
Conference on Programming Language Design and Implementation.

[334] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. SIGPLAN 
Notices, 26(6):30-44, June 1991. Proceedings of the ACM SIGPLAN ’91 Conference on 
Programming Language Design and Implementation.

[335] Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 
Redwood City, CA, 1996.

[336] D. Wood. The theory of left-factored languages, part 1. The Computer Journal, 
12(4):349-356, November 1969.

[337] D. Wood. The theory of left-factored languages, part 2. The Computer Journal, 13 (1) :55- 
62, February 1970.

[338] D. Wood. A further note on top-down deterministic languages. The Computer Journal, 
14(4):396-403, November 1971.

[339] William Wulf, Richard K. Johnsson, Charles B. Weinstock, Steven 0. Hobbs, and 
Charles M. Geschke. The Design of an Optimizing Compiler. Programming Languages 
Series. American Elsevier Publishing Company, Inc., New York, NY, 1975.

[340] Cliff Young, David S. Johnson, David R. Karger, and Michael D. Smith. Near-optimal 
intraprocedural branch alignment. SIGPLAN Notices, 32(5):183-193, May 1997. Pro
ceedings of the ACM SIGPLAN ’97 Conference on Programming Language Design and 
Implementation.

[341] Daniel H. Younger. Recognition and parsing of context-free languages in time ^.Infor
mation and Control, 10(2):189-208, 1967.

[342] F. Kenneth Zadeck. Incremental data flow analysis in a structured program editor. SIG
PLAN Notices, 19 (6): 132—143, June 1984. Proceedings of the ACM SIGPLAN ’84 Symposium 
on Compiler Construction.


