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E. Čech, Ann. of Math. 37, 1936, p. 681.

23 (279) A direct topological approach: L. Pontrjagin, Comptes Rendus 200, 1935, 
p. 1277.

CHAPTER IX
1 (280) I follow my own method as expounded in Ann. of Math. 37, 1936, pp. 743-745, 

and 88, 1937, pp. 477-483. For the abstract treatment see: van der Waerden, Moderne 
Algebra II, pp. 172-177, 207-211. Deuring, Algebren, Ergebn. Math. 4, 1, Berlin, 1935, 
and the literature cited there. Particularly important: E. Noether, Math. Zeitschr. 57, 
1933, p. 514.

2 (282) First proved by Th. Skolem, Shr. norské Vid.-Akad., Oslo, 1927.
3 (287) R. Brauer, Jour, reine angew. Math. 166, 1932, p. 241; 168, 1932, p. 44.
4 (290) Cf. R. Brauer and E. Noether, Sitzungsber. Preuss. Akad. 1927, p. 221. Con

cerning E. Noether’s related “verschränkte Produkte” and R. Brauer’s “Faktorensysteme” 
see: H. Hasse, Transact. Am. Math. Soc. 34, 1932, p. 171; R. Brauer, Math. Zeitschr. 28, 
1928, p. 677; 51, 1930, p. 733; also Weyl, Ann. of Math. 87, 1936, pp. 723-728, and Deuring, l.c.

6 (290) van der Waerden, Moderne Algebra II, p. 174. J. H. M. Wedderburn, Ann. of 
Math. 38, 1937, p. 854.

Supplementary Bibliography, mainly for the years 1940-1946

Important books: A. A. Albert, Structure of algebras, Am. Math. Soc. Coll. Publications 
#-4,. New York, 1939. E. Artin, C. J. Nesbitt, R. M. Thrall, Rings with minimum con
dition, Univ. of Mich. Pubs, in Math. 1, Ann Arbor, Mich., 1944. C. Chevalley, Theory 
of Lie groups, Princeton Math. Ser. 8, Princeton University Press, 1946. W. V. D. 
Hodge, The theory and applications of harmonic integrals, Cambridge, Eng., 1941. N. 
Jacobson, Theory of rings, Am. Math. Soc. Mathematical Surveys 2, New York, 1943. 
D. E. Littlewood, The theory of group characters and matrix representations of groups, 
New York, 1940. F. D. Murnaghan, The theory of group representations, Baltimore, 
1938. André Weil, L’integration dans les groupes topologiques et ses applications, Paris, 
1938.



BIBLIOGRAPHY 315

On modular representations, which are mentioned in the footnote on p. 100, extensive 
work has been done by R. Brauer and his collaborators: R. Brauer, Act. sci. et industr. 
196, 1935. R. Brauer and C. Nesbitt, Toronto Studies, Math. Ser. 4, 1937. T. Naka
yama, Ann. of Math. 89, 1938, 361-369. R. Brauer, Proc. Natl. Acad. 26, 1939, 252-258; 
Ann. of Math. 42, 1941, 53-61; 926-958. R. Brauer and C. J. Nesbitt, Ann. of Math. 
42, 1941, 556-590.

For Chapters VII and VIII compare now: D. E. Littlewood, Proc. Camb. Phil. Soc. 
38, 1942, 394-396; ibid. 89, 1943, 197-199; Phil. Trans. Roy. Soc. London Ser. A, 239, 
1944, 305-365 and 387-417.

About Hodge’s theory of harmonic integrals, which is related to the subject of Chap. 
VIII, §16, cf. H. Weyl, Ann. of Math. 44-, 1945, 1-6. Pontrjagin’s method for determining 
the Betti numbers of compact Lie groups [see Bibliography, Chap. Vili,23] is more fully 
developed in: Ree. Math., New Ser. (Mat. Sbornik) (6) 48, 1939, 389-422. Related papers:
H. Hopf, Ann. of Math. 42, 1941, 22-52, and H. Samelson, ibid., 1093-1137.

For the construction of all semi-simple Lie algebras compare, besides the papers men
tioned in the Bibliography, Chap. Vili,9: E. Witt, Abh. Math. Sem. Hans. Univ. 14, 1941, 
289-322.

For Chap. X, Suppl. A and B, cf. H. Weyl, Amer. Jour, of Math. 63, 1941, 779-784; for 
Suppl. D cf. N. Jacobson, Theory of Rings, Math. Surveys 2, 1943, Chapter 5.


