CONTENTS

FOREWORD	3
Chapter 1: BASIC CONCEPTS	8
1 INTRODUCTION	8
1.1 Background documents	8
1.2 General principles	8
2 PRINCIPLES AND GENERAL FRAMEWORK OF ASSESSMENT	9
3 INVESTIGATION	10
4 BASIC VARIABLES	11
5 EVALUATION OF INSPECTION RESULTS	11
6 STRUCTURAL ANALYSIS	13
7 VERIFICATION	13
8 ASSESSMENT IN THE CASE OF DAMAGE	14
9 FINAL REPORT AND DECISION	15
10 CONCLUDING REMARKS	16
Chapter 2: CURRENT STANDARDS	17
1 INTRODUCTION	17
2 HISTORICAL DEVELOPMENT OF STANDARDS	17
3 REQUIREMENTS AND POSSIBLE CONTENTS	21
4 PRENORMATIVE RESEARCH	22
5 ISO-STANDARDS	23
6 CURRENT CODE AND GUIDELINE DEVELOPMENTS	23
Chapter 3: REQUIREMENTS ON PERFORMANCE	26
1 INTRODUCTION	26
2 GENERAL FRAMEWORK	26
3 BACKGROUND CONCEPTS	27
3.1 Residual working life and design situation	27
3.2 Limit states	28
3.3 Ultimate limit states	30
3.4 Serviceability limit states	30
3.5 Global failure and robustness	32
4 CONCLUDING REMARKS	34
Chapter 4: ASSESSMENT PROCESS	35
1 INTRODUCTION	35
2 PRINCIPLES AND GENERAL FRAMEWORK OF ASSESSMENT	35
3 INVESTIGATION ASPECTS	38
4 PHASES IN THE PROCESS	39
5 INSPECTION AND MAINTENANCE	41
6 DECISION CRITERIA	42

Chapter 5: STRUCTURAL REANALYSIS	45
1 INTRODUCTION	45
2 PRELIMINARY STRUCTURAL SYSTEM EVALUATION	45
3 STRUCTURAL MODELS	46
4 REASSESSMENT ASPECTS FOR HERITAGE STRUCTURES	47
5 INFLUENCE OF DETERIORATION	48
6 OVERALL STRUCTURAL BEHAVIOUR	49
Chapter 6: PROBABILISTIC ASSESSMENT	51
1 INTRODUCTION	51
1.1 Background documents	51
1.2 General principles	51
2 BASIC CONCEPTS	51
2.1 Fundamental cases	51
2.2 Fundamental cases of one random variable	53
2.3 Two random variables having normal distribution	56
2.4 Two random variables having general distribution	58
3 DESIGN POINT IN EUROCODES	60
4 MULTIVARIATE CASE	63
4.1 General	63
4.2 FORM and SORM	65
4.3 Simulation methods	68
5 TARGET RELIABILITY LEVEL	70
6 TIME DEPENDENT RELIABILITY	72
7 PRINCIPLES OF THE PARTIAL FACTOR METHOD	73
8 CONCLUDING REMARKS	74
Chapter 7: RELIABILITY UPDATING	76
1 INTRODUCTION	76
2 BAYESIAN APPROACH	76
3 FORMULATION OF PROBABILISTIC MODELS	78
4 DECISION ANALYSIS	79
4.1 Decision trees	79
4.2 Assessment of utility	80
4.3 Prior and posterior analysis	81
5 PRINCIPLES OF UPDATING	85
6 UPDATING OF RANDOM VARIABLES	86
7 UPDATING OF EVENT PROBABILITIES	87
8 EXAMPLES	88
8.1 Updating of material strength	88
8.2. Updating of event probability	90
8.3 Reliability updating due to resistance updating	93
9 CASE STUDY 1: FATIGUE OF STEEL JOINTS	93
10 CASE STUDY 2: R.C. ROOF STRUCTURE	96
11 CASE STUDY 3: STEEL MEMBER OF AN INDUSTRIAL HERITAGE BUILDING	98

Chapter 8: PROOF LOADING	101
1 INTRODUCTION	101
2 PROOF LOAD TESTS	101
3 IDENTIFYING THE PRESENT CONDITION OF STRUCTURES	102
4 RELIABILITY CONSIDERATIONS	103
5 EFFECT OF PROOF LOADS	104
5.1 Determination of proof loads	104
5.2 Reduction of test failure probability	108
6 FINAL REMARKS	109
Chapter 9: ACCEPTANCE CRITERIA	110
1 INTRODUCTION	110
2 HUMAN SAFETY	111
2.1 Individual risk	111
2.2 Societal risk	111
3 OPTIMIZATION	113
4 LIFE QUALITY INDEX APPROACH	114
5 CALIBRATION	114
6 TARGET RELIABILITY IN CODES	115
6.1 General	115
6.2 Reliability classes	115
7 ACCEPTABLE RELIABILITY FOR EXISTING STRUCTURES	117
8 COLLAPSE	118
9 CONCLUDING REMARKS	120
Chapter 10: COST OPTIMISATION	122
1 INTRODUCTION	122
2 COST OPTIMISATION	122
3 TARGET RELIABILITIES BASED ON THE COST MINIMISATION	124
4 CASE STUDY	124
4.1 Probabilistic reliability analysis	125
4.2 Input data for the cost optimisation	125
4.3 Optimum upgrade strategy and decision on the upgrade based on the cost optimisation	126
5 CONCLUDING REMARKS	129
Annex A: TERMINOLOGY	131
Annex B: BAYESIAN TECHNIQUES	139
1 INTRODUCTION	139
2 BASIS OF BAYESIAN UPDATING	139
3 PROCEDURE IN ACCORDANCE WITH ISO 12491	140
4 CASE STUDY 1: UPDATING OF THE CONCRETE STRENGTH	141
5 CASE STUDY 2: UPDATING OF THE YIELD STRENGTH OF REINFORCEMENT	142
5.1 Prior information	142
5.2 Evaluation of test results	143
5.3 Bayesian updating	143
6 CASE STUDY 3: COMBINATION OF TWO RANDOM SAMPLES	144
7 CONCLUDING REMARKS	146