Contents

T	c	
Pre	face	XVII

Chapter 1	The Science of Animal Behavior	2
CHUPTEL I	THE SCIENCE OF AUTHOR BEHAVIOR	

1.1	Animals and their behavior are an integral part of human society		
	Recognizing and defining behavior 5		
	Measuring behavior: elephant ethograms	5 damanda shirining	

- 1.2 The scientific method is a formalized way of knowing about the natural world 6
 The importance of hypotheses 7
 The scientific method 7
 Correlation and causality 10
 Hypotheses and theories 11
 Social sciences and the natural sciences 11
- 1.3 Animal behavior scientists test hypotheses to answer research questions about behavior

 Hypothesis testing in wolf spiders 12

 Negative results and directional hypotheses 13

 Generating hypotheses 14

 Hypotheses from mathematical models 14
- Anthropomorphic explanations of behavior assign human emotions to animals and can be difficult to test 15
- 1.5 Scientific knowledge is generated and communicated to the scientific community via peer-reviewed research 17

 The primary literature 17

 The secondary literature 18

Chapter Summary and Beyond 19 Questions 19

Chapter 2 Behavioral Genetics 20

2.1 Behavioral variation is associated with genetic variation 22

The search for a genetic basis of behavior 22

Behavioral differences between wild-type and mutant-type fruit flies 23

Major and minor genes 24

QTL mapping to identify genes associated with behavior 24

QTL mapping for aphid feeding behavior 24

Fire ant genotype and social organization 25

Experimental manipulation of gene function: knockout studies 27

Anxiety-related behavior and knockout of a hormone receptor in mice 27

2.2	The environment influences gene expression and behavior	29
	Heritability 29	
	Environmental effects on zebrafish aggression 31	
	Social environment and gene expression in fruit flies 31	
	Social environment and birdsong development 33	
	Social environment and gene expression in birds 34	
	Gene-environment interactions 35	
	Royer and sitter foraging behavior in fruit flies 35	

2.3 Genes can limit behavioral flexibility 38 Bold-shy personalities in streamside salamanders 38 Animal personalities: a model with fitness trade-offs 40

Chapter Summary and Beyond 41 Questions 41

Chapter 3 Learning and Cognition 42

- Learning allows animals to adapt to their environment 44
 Learning as an adaptation in juncos 44
 Evolution of learning 44
 Green frog habituation to intruder vocalizations 46
- Neurotransmitters and learning in chicks 48

 Dendritic spines and learning in mice 49

 Avian memory of stored food 51
- Animals learn stimulus-response associations 53
 Classical conditioning 53
 Pavlovian conditioning for mating opportunities in Japanese quail 54
 Fish learn novel predators 55
 Operant conditioning 56
 Learning curves in macaques 58
 Trial-and-error learning in bees 58
- Ptarmigan chicks learn their diet 61
 Prairie dogs learn about predators 62
 Learning the location of food patches 63
 Social information use in sticklebacks 64
 Public information use in starlings 65
- 3.5 Social learning can lead to the development of animal traditions and culture 67
 Behavioral tradition in wrasse 68

3.6 Some animals can use mental representations to solve complex problems 69

History of animal cognition research 70

Elephants and insight learning 71

Numerical competency in New Zealand robins 71

Cognition and brain architecture in birds 72

Chapter Summary and Beyond 74 Questions 75

Chapter 4 Communication 76

- Communication occurs when a specialized signal from one individual influences the behavior of another 78

 Honeybees and the waggle dance 78

 Odor or the dance in bees 79

 Auditory signals: alarm calls 80

 Titmouse alarm calls 81

 Information or influence? 81
- Signals are perceived by sensory systems and influenced by the environment 82
 Chemoreception 82
 Ant pheromones 83
 Photoreceptors 83
 Habitat structure and visual signals in birds 84
 Auditory receptors 86
 Habitat structure and bowerbird vocal signals 87
- Signals can accurately indicate signaler phenotype and environmental conditions * 89
 Signals as accurate indicators: theory 89
 Aposematic coloration in frogs 90
 Courtship signaling in spiders 91
 Aggressive display and male condition in fighting fish 93
- 4.4 Signals can be inaccurate indicators when the fitness interests of signaler and receiver differ 93

 Batesian mimicry and Ensatina salamanders 95

 Aggressive mimicry in fangblenny fish 96

 Intraspecific deception: false alarm calls 97

 Topi antelope false alarm calls 97

 Capuchin monkeys and inaccurate signals 99
- 4.5 Communication networks affect signaler and receiver behavior 101
 Squirrel eavesdropping 101
 Eavesdropping in túngara frogs 102
 Audience effects in fighting fish 103

Chapter Summary and Beyond 104 Questions 105

Chapter 5	Foraging	Behavior	106
-----------	----------	----------	-----

5.1	Animals find food using a variety of sensory modalities		
_	Catfish track the wake of their prey 108		
	Bees use multiple senses to enhance foraging efficiency 111		
	Gray mouse lemurs use multiple senses to find food 112		

- Visual predators find cryptic prey more effectively by learning a search image 113

 Cryptic coloration reduces predator efficiency in trout 114

 Blue jays use a search image to find prey 114
- The optimal diet model predicts the food types an animal should include in its diet

 The diet model 116

 A graphical solution 117

 Diet choice in northwestern crows 119

 Ant foraging: the effect of nutrients 121
- The optimal patch-use model predicts how long a forager should exploit a food patch
 The optimal patch-use model 122
 Patch use by ruddy ducks 124
 Optimal patch model with multiple costs 125
 Fruit bats foraging on heterogeneous patches 125
 Gerbil foraging with variable predation costs 127
 Incomplete information and food patch estimation 128
 Bayesian foraging bumblebees 130

Chapter Summary and Beyond 132 Questions 133

Chapter 6 Antipredator Behavior 134

- Animals modify their behavior to reduce predation risk

 Predator avoidance by cryptic coloration in crabs 136

 Predators and reduced activity in lizards 138

 Prey take evasive action when detected 139
- Many behaviors represent adaptive trade-offs involving predation risk 139
 Increased vigilance decreases feeding time 140
 Vigilance and predation risk in elk 141
 Energy intake versus safety in squirrels 142
 Rich but risky 144
 Environmental conditions and predation risk in foraging redshanks 144
 Predation risk and patch quality in ants 146
 Mating near predators in water striders 148
 Mating and refuge use in fiddler crabs 149

- 6.3 Living in groups can reduce predation risk 150

 The dilution effect and killifish 150

 The selfish herd and vigilance behavior 151

 Group size effect and the selfish herd hypothesis in doves 152
- 6.4 Some animals interact with predators to deter attack 153
 Predator harassment in ground squirrels 154
 Mobbing owl predators 156
 Pursuit deterrence and alarm signal hypotheses 156
 Tail-flagging behavior in deer 157

Chapter Summary and Beyond 158 Questions 159

Chapter 7 Dispersal and Migration 160

- Dispersal reduces competition and inbreeding 162
 Dispersal in adult springtails 162
 Natal dispersal in northern goshawks 163
 Inbreeding avoidance in voles 164
- Reproductive success affects breeding dispersal 166

 Breeding dispersal in dragonflies 166

 Public information from conspecifics affects breeding dispersal 168

 Kittiwakes and public information 168
- Animals migrate in response to changes in the environment Migration and changing resources 170
 Resource variation and migration in neotropical birds 171
 The evolution of migration 172
 Competition and migratory behavior of newts 173
 Maintenance of polymorphism in migratory behavior 174
 Competition and migratory behavior of dippers 175
- 7.4 Animals use multiple compass systems to determine direction 176

 The sun compass in monarch butterflies 177

 Antennae and the sun compass system in monarchs 180

 The magnetic compass in sea turtles 180

 Magnetoreception 182

 Multimodal orientation 183
- Bicoordinate navigation allows individuals to identify their location relative to a goal

 Bicoordinate navigation and magnetic maps in sea turtles 184

 Bicoordinate navigation in birds 185

 Homing migration in salmon 187

Chapter Summary and Beyond 189 Questions 189

Chapter 8 Hal	oitat Selection,	Territoriality,	and Aggression	190
---------------	------------------	-----------------	----------------	-----

- Resource availability and the presence of others influence habitat selection
 The ideal free distribution model 192
 The ideal free distribution model and guppies 193
 The ideal free distribution model and pike 195
 Cuckoos assess habitat quality 196
 Conspecific attraction 197
 Conspecific attraction and Allee effects in grasshoppers 198
 Conspecific cueing in American redstarts 200
- Body condition affects territoriality in damselflies 201
 Environmental factors and territory size in kites 203
- The decisions of opponents and resource value affect fighting behavior 204
 The hawk-dove model 205
 The sequential assessment model: fiddler crab contests 205
 Resource value and fighting behavior in penguins 209
 Salamander fights for mates 210
- Winner-challenge effect in the California mouse 213
 Challenge hypothesis and bystanders in fish 214

Chapter Summary and Beyond 216 Questions 217

Chapter 9 Mating Behavior 218

- 9.1 Sexual selection favors characteristics that enhance reproductive success 220
 Why two sexes? 221
 Bateman's hypothesis and parental investment 221
 Antlers as weapons in red deer 222
 Weapon size and mating success in dung beetles 223
 Ornaments and mate choice in peafowl 224
 The origin of sexually selected traits: the sensory bias hypothesis in guppies 226
 Male mate choice in pipefish 227
- 9.2 Females select males to obtain direct material benefits 229
 Female choice and nuptial gifts in fireflies 229
 Female choice and territory quality in lizards 231
- Female mate choice can evolve via indirect benefits to offspring 231
 Fisherian runaway and good genes 232
 Mate choice for good genes in tree frogs 233
 Good genes and immune system function in birds 234
 Mate choice fitness benefits in spiders 235

- 9.4 Sexual selection can also occur after mating 237

 Mate guarding in warblers 237

 Sperm competition in tree swallows 238

 Cryptic female choice 239

 Inbreeding avoidance via cryptic female choice in spiders 239
- 9.5 Mate choice by females favors alternative reproductive tactics in males

 The evolution of alternative reproductive tactics 241

 Conditional satellite males in tree frogs 241

 ESS and sunfish sneaker males 242
- Mate choice is affected by the mating decisions of others

 Mate copying in guppies 244

 Mate copying in fruit flies 245

 The benefit of mate copying 245

 Nonindependent mate choice by male mosquitofish 247

Chapter Summary and Beyond 248 Questions 249

Chapter 10 Parental Care 250

- Parental care varies among species and reflects life history trade-offs 252
 Life history variation in fish 253
- Female-biased parental care 254
 Paternity uncertainty and parental care in boobies 255
 The evolution of male-only care 255
 Paternity uncertainty and male-only care in sunfish 256
 Paternity assurance and male care in water bugs 258
- Prolactin and maternal care in rats 259
 Prolactin and incubation in penguins 260
 Juvenile hormones and parental care in earwigs 261
- Parental care involves fitness trade-offs between current and future reproduction

 Predation risk and parental care in golden egg bugs 262

 Egg guarding and opportunity costs of parental care in frogs 263

 Parent-offspring conflict theory 264

 Parental care trade-off in treehoppers 265

 Incubation of eider eggs as a trade-off 267

 Brood reduction and parent-offspring conflict 269

 Hatch asynchrony and brood reduction in blackbirds 269

 Brood reduction in fur seals 271

 Brood parasitism 272

 Conspecific brood parasitism in ducks 273

Chapter Summary and Beyond 274 Questions 275

Chapter 11 Social Behavior 276

- Foraging benefits: reduced search times for food in minnows 279
 Foraging benefits: increased diet breadth in coyotes 280
 Antipredator benefits in honeycreepers 281
 Aerodynamic benefit: reduced cost of movement in pelicans 282
 The costs of sociality 282
 Competition in schooling fish 283
 Group size and competition in primates 283
 Sociality and disease transmission in guppies 284
- Dominance hierarchies within groups reduce aggression 286
 Dominance hierarchies and crayfish 286
 Stable dominance hierarchies in baboons 287
 Social queuing in dominance hierarchies in clownfish 289
- Helping behavior, or altruism, is often directed toward close kin
 Hamilton's rule 290
 Belding ground squirrel alarm calls 291
 Altruism and helping at the nest in birds 292
 Altruism in turkeys 293
- 11.4 Some species exhibit extreme altruism in the form of eusociality 295
 Eusociality and haplodiploidy 295
 Eusociality in ants 296
 Evolution of eusociality and kin selection in Hymenoptera 297
- The prisoner's dilemma 299
 Reciprocal altruism in vampire bats 300
 Allogrooming in Japanese macaques 301
 Tit-for-tat in red-winged blackbirds 303
 Indirect reciprocity 304
 Reputations and cleaner fish 304
 Chimpanzee image scores 305

Chapter Summary and Beyond 308 Questions 309

Glossary 311 Credits 321 Index 325