CONTENTS

Preface	
Notation	

1. THE NORMAL FERMI LIQUID

ix

xi

8	1.	Elementary exitations in a quantum Fermi liquid	1
8	2.	Interaction of quasi-particles	8
8	3.	Magnetic susceptibility of a Fermi liquid	12
8	4.	Zero sound	13
8	5.	Spin waves in a Fermi liquid	19
8	6.	A degenerate almost ideal Fermi gas with repulsion between the particles	21

II. GREEN'S FUNCTIONS IN A FERMI SYSTEM AT T = 0

8	7.	Green's functions in a macroscopic system	28
8	8.	Determination of the enregy spectrum from the Green's function	33
8	9.	Green's function of an ideal Fermi gas	38
8	10.	Particle momentum distribution in a Fermi liquid	41
§	11.	Calculation of ther modynamic quantities from the Green's function	42
8	12.	Ψ operators in the interaction representation	43
§	13.	The diagram technique for Fermi systems	46
§	14.	The self-energy function	53
8	15.	The two-particle Green's function	56
8	16.	The relation of the vertex function of the quasi-particle scattering amplitude	60
8	17.	The vertex function for small momentum transfers	63
§	18.	The relation of the vertex function to the quasi-particle interaction function	68
ş	19.	Identities for derivatives of the Green's function	71
8	20.	Derivation of the relation between the limiting momentum and the density	76
8	21.	Green's function of an almost ideal Fermi gas	78

III. SUPERFLUIDITY

8	22.	Elementary excitations in a quantum Bose liquid	85
§	23.	Superfluidity	88
8	24.	Phonons in a liquid	94
8	25.	A degenerate almost ideal Bose gas	98
§	26.	The wave function of the condensate	102
8	27.	Temperature dependence of the condensate density	106
8	28.	Behaviour of the superfluid density near the λ -point	109
8	29.	Quantized vortex filaments	111
8	30.	A vortex filament in an almost ideal Bose gas	117
8	31.	Green's functions in a Bose liquid	118
8	32.	The diagram technique for a Bose liquid	124

v

~				
1 01	н Г.	01	43	6
201	4.61	c1	6 I	3

8	33.	Self-energy functions	127
ş	34.	Disintegration of quasi-particles	131
ş	35.	Properties of the spectrum near its termination point	135
		IV. GREEN'S FUNCTIONS AT NON-ZERO TEMPERATURES	
8	36.	Green's functions at non-zero temperatures	141
8	37.	Temperature Green's functions	146
8	38.	The diagram technique for temperature Green's functions	149
		V SUPERCONDUCTIVITY	
		V. SOFERCONDUCTIVITI	
§	39.	A superfluid Fermi gas. The energy spectrum	153
ş	40.	A superfluid Fermi gas. Thermodynamic properties	159
ĝ	41.	Green's functions in a superfluid Fermi gas	164
ş	42.	Temperature Green's functions in a superfluid Fermi gas	169
ş	43.	Superconductivity in metals	171
§	44.	The superconductivity current	173
8	45.	The Ginzburg-Landau equations	178
8	46.	Surface tension at the boundary of superconducting and normal phases	184
8	47.	The two types of superconductor	190
§	48.	The structure of the mixed state	193
8	49.	Diamagnetic susceptibility above the transition point	201
8	50.	The Josephson effect	204
8	51.	Relation between current and magnetic field in a superconductor	208
8	52.	Depth of penetration of a magnetic field into a superconductor	214
8	53.	Superconducting allovs	216
\$	54.	The Cooper effect for non-zero orbital angular momenta of the pair	219
		VI. ELECTRONS IN THE CRYSTAL LATTICE	
ş	55.	An electron in a periocid field	223
8	56.	Effect of an external field on electron motion in a lattice	232
8	57.	Quasi-classical trajectories	236
§	58.	Quasi-classical energy levels	240
ş	59.	The electron effective mass tensor in the lattice	243
8	60.	Symmetry of electron states in a lattice in a magnetic field	247
ş	61.	Electronic spectra of normal metals	251
ş	62.	Green's function of electrons in a metal	255
ş	63.	The de Haas-van Alphen effect	259
ş	64.	Electron-phonon interaction	266
ş	65.	Effect of the electron-phonon interaction on the electron spectrum in a metal	270
ş	66.	The electron spectrum of solid insulators	274
ş	67.	Electrons and holes in semiconductors	277
ş	68.	The electron spectrum near the degeneracy point	279

VII. MAGNETISM

§ 69	. Equation of motion of the magnetic moment in a ferromagnet	284
§ 70). Magnons in a ferromagnet. The spectrum	289
§ 71	. Magnons in a ferromagnet. Thermodynamic quantities	294

vi

72. The spin Hamiltonian	300
§ 73. Interaction of magnons	305
§ 74. Magnons in an antiferromagnet	310

Contents

vii

VIII. ELECTROMAGNETIC FLUCTUATIONS

ş	75.	Green's function of a photon in a medium	314
ş	76.	Electromagnetic field fluctuations	319
ş	77.	Electromagnetic fluctuations in an infinite medium	321
ş	78.	Current fluctuations in linear circuits	326
§	79.	Temperature Green's function of a photon in a medium	327
§	80.	The van der Waals stress tensor	331
§	81.	Forces of molecular interaction between solid bodies. The general formula	338
ş	82.	Forces of molecular interaction between solid bodies. Limiting cases	342
§	83.	Asymptotic behaviour of the correlation function in a liquid	347
§	84.	Operator expression for the permittivity	350
8	85.	A degenerate plasma	353

IX. HYDRODYNAMIC FLUCTUATIONS

ş	86. Dynamic form factor of a liquid	360
ş	87. Summation rules for the form factor	364
ş	88. Hydrodynamic fluctuations	368
§	89. Hydrodynamic fluctuations in an infinite medium	373
ş	90. Operator expressions for the transport coefficients	378
8	91. Dynamic form factor of a Fermi liquid	380
	Index	385