The series of texts. Classical Theoretical Physics. is based on the highly successful series of courses given by Walter Greiner and his colleagues at the Johann Wolfgang Goethe University in Frankfurt am Main. Germany. Intended for advanced undergraduates and beginning graduate students. the volumes in this series will provide not only a complete survey of classical theoretical physics but also an enormous number of worked examples and problems to show students clearly how to apply the underlying principles to realistic problems.

Thermodynamics and Statistical Mechanics covers:

Thermodynamics

- · basic definitions of thermodynamics. equilibrium. state variables
- the first and second laws
- · phase transitions and chemical reactions
- thermodynamic potentials

Statistical Mechanics

- · statistics of microscopic states and connection to the entropy
- · the microcanonical. canonical and grand canonical ensembles
- applications of Boltzmann statistics

Quantum Statistics

- the density operator
- many-particle wave functions
- ideal quantum systems
- the ideal Bose gas and applications to blackbody radiation. Kirchhoff's law, and lattice vibrations
- the ideal Fermi gas and applications to condensed-matter physics, astrophysics, and nuclear physics
- · relativistic Bose and Fermi gases and applications to particle physics

Real Gases and Phase Transitions

- real gases and the virial expansion
- classification of phase transitions and critical indices

ISBN 0-387-94299-8 ISBN 3-540-94299-6 www.springer-ny.com

Contents

E	or.	OV	M	rı	4
		0.4		• •	

Preface

I Thermodynamics

1. Equilibrium and State Quantities	3
Introduction	3
Systems, phases and state quantities	4
Equilibrium and temperature-the zeroth law of thermodynamics	6
Kinetic theory of the ideal gas	10
Pressure, work and chemical potential	13
Heat and heat capacity	15
The equation of state for a real gas	17
Specific heat	20
Changes of state—reversible and irreversible processes	23
Exact and inexact differentials, line integrals	25
2. The Laws of Thermodynamics	33
The first law	33
Carnot's process and entropy	37
Entropy and the second law	41
Insertion: Microscopic interpretation of entropy and of the second law	43
Global and local equilibrium	51
Thermodynamic engines	52
Euler's equation and the Gibbs-Duhem relation	58

v

vii

1

0	2	61	-	-		-	0
	o	N		E	N		э

3.	Phase Transitions and Chemical Reactions	62
	Gibbs' Phase Rule	62
	Phase equilibrium and the Maxwell construction	67
	The law of mass action	70
	Application of the laws of thermodynamics	80
4.	Thermodynamic Potentials	84
	The principle of maximum entropy	84
	Entropy and energy as thermodynamic potentials	85
	The Legendre transformation	87
	The free energy	91
	The enthalpy	95
	The free enthalpy	101
	The grand potential	107
	The transformation of all variables	108
	The Maxwell relations	108
	Jacobi transformations	115
	Thermodynamic stability	118
11	Statistical Mechanics	121
5.	Number of Microstates Ω and Entropy S	123
	Foundations	123
	Phase space	124
	Statistical definition of entropy	127
	Gibbs' paradox	132
	Pseudo quantum mechanical counting of Ω	135
6.	Ensemble Theory and Microcanonical Ensemble	142
	Phase-space density, ergodic hypothesis	142
	Liouville's theorem	145
	The microcanonical ensemble	147
	Entropy as an ensemble average	149
	The uncertainty function	150
7.	The Canonical Ensemble	159
	General foundation of the Gibbs correction factor	164
	Systems of noninteracting particles	170
	Calculation of observables as ensemble averages	177
	Connection between microcanonical and canonical ensembles	186

CONTENTS

191
194
alue of all
200
208
200
208
214
223
225
234
240
240
248
0.55
255
257
251
257
261
266
270
ons 285
205
ms 207
110 271
314
514
325
341
541
347
385

CONTENTS

15.	Applications of Relativistic Bose and Fermi Gases	1
	Quark-gluon plasma in the Big Bang and in heavy-ion collisions	1
	presible dissolutions	
IV	Real Gases and Phase Transitions	-
16.	Real Gases	
	For absorption: Mayer's cluster expansion	
	Virial expansion	
17.	Classification of Phase Transitions	
	Theorem of corresponding states	
	Critical indices	
	Examples for phase transitions	
18.	The Models of Ising and Heisenberg	
Inde	III Ouentum Statistics xe	