The Sedimentary Record of Sea-Level Change

Angela L. Coe The Open University, Milton Keynes, UK Dan W. J. Bosence Royal Holloway University of London, UK Kevin D. Church The Open University, Milton Keynes, UK Stephen S. Flint University of Liverpool, UK John A. Howell University of Bergen, Norway R. Chris L. Wilson The Open University, Milton Keynes, UK

This unique textbook describes how past changes in sea-level can be detected through analysis of the sedimentary record. In particular, it concentrates on the theory of sequence stratigraphy, which provides a framework for how entire sedimentary systems evolve through geological time. Sequence stratigraphy is a model for dividing the sedimentary record into discrete, genetically related packages on a range of length-and time-scales, where each package represents a cyclic change in sea-level and/or sedimentary record, to examine the global synchroneity of sedimentary cycles and in the exploration for hydrocarbon reserves.

Designed for undergraduate and graduate courses in sequence stratigraphy, as well as for professional courses within the petroleum industry, this textbook includes many features that will aid tutors and students alike, including:

- numerous full-colour figures and photographs throughout;
- detailed case studies demonstrating the applications of sequence stratigraphy;
- boxed summaries of supplementary and background information;
- bulleted questions and answers throughout the text;
- a supporting website http://publishing.cambridge.org/resources/0521831113 hosting sample pages, selected illustrations to download, and worked exercises.

Advance reviews of this textbook:

'The main body of this book constitutes a fine presentation of the principles of sequence stratigraphy and their application to clastic and carbonate examples. The use of the Book Cliffs as the main clastic example is an excellent choice. The authors clearly know this area well, and their descriptions and interpretation are well done; they take into account all of the various hypotheses and controversies that have arisen around these rocks. The writing is clear and straightforward and the illustrations are truly excellent.'

Professor Andrew Miall University of Toronto, Canada

'This textbook is simply without equal and there are no competing texts in this field. I have been amazed that it has taken so long for any textbook at the introductory level to give a complete and accurate treatment of sequence stratigraphy, and this text does it remarkably well. There is a clear need for a text such as this in any advanced undergraduate stratigraphy course. The text is logically laid out and the explanation of sequence-stratigraphic principles is perhaps the most lucid I have read anywhere.'

Dr Steven Holland University of Georgia, Athens, USA

'This book has a lot to commend it. The approach to the subject of sequence stratigraphy using well-documented case studies is excellent, and as such the book fills an important niche in the market. Even the areas where there is overlap with other books, this text is better than others: indeed, it is the best summary of the concepts of sequence stratigraphy I have ever read. It is also a very well-written text. The style is clear and consistent throughout, a tribute to some very high quality editing of a multi-author book. Furthermore, the illustrations, both line drawings and photographs, are of extremely high quality, and they very effectively complement the text.'

Dr Gary Nichols Royal Holloway University of London, UK

Contents

Pref	ace	8
PAR	T 1 Introduction	9
1 S Eartl	edimentary rocks as a record of h processes	9
1.1	Interpreting time from the sedimentary record	11
1.2	Processes	15
1.3	Repetition in the sedimentary record	16
1.4	Summary and conclusion	17
1.5	References	17
2 D and	ivision of the stratigraphical record geological time	18
2.1	Stratigraphical techniques	20
2.1.1	Lithostratigraphy	20
2.1.2	Biostratigraphy	20
2.1.3	Magnetostratigraphy	22
21.5	Chemostratiaraphy	24
2.1.6	Astrochronology	26
2.2	Timing is everything	30
2.3	The geological time-scale	32
2.4	Summary	32
2.5	References	33
3 S	ea-level change	34
3.1	Noah's flood: a record of sea-level change	34
3.2	Measurement of sea-level change	38
3.2.1	Oxygen isotopes	38
3.2.2	Coastline maps and coastal sediments	41
3.2.3	Tide-gauge records	42
3.3	Why does sea-level change?	43
3.4	What do we mean by 'sea-level'? Definitions of eustasy, relative sea-level and water depth	44
3.5	An example of sea-level change from the Carboniferous sedimentary record	46
3.6	Conclusion	54
3.7	Summary	54
3.8	References	55

PART 2 Sequence stratigraphy and sea-level change

57

4 S	equence stratigraphy	57
4.1	Sediment accommodation space	58
4.2	Filling basins with sediments and the development of parasequences	61
4.2.1	Parasequence sets, progradation, aggradation and retroaradation	64
4.2.2	Regression and forced regression	66
4.3	Sequences and systems tracts	68
4.3.1	The construction of a sequence	69
4.3.2 4.3.3	Field examples of key surfaces and systems tracts Natural variability and summary of the features of sequences	84
44	The Carboniferous example revisited	88
4.5	Lithostratigraphy versus chronostratigraphy, seismic stratigraphy, and the geometry of sequence stratigraphical surfaces	90
4.6	Global sea-level change and eustatic	-
	sea-level charts	94
4.7	Summary	95
4.8	References	98
5 P sea-	rocesses controlling relative level change and sediment supply	99
5.1	Climatic processes	101
5.1.1	Glacio-eustasy	101
5.1.2	Eustatic sea-level changes during greenhouse	101
5.1.3	The role of climate in sediment supply	101
5.2	Tectonic processes	103
5.2.1	Tectono-eustasy	103
5.2.2	Intraplate stresses	104
5.2.3	Inhomogeneities in the mantle and geoidal	
	sea-level change	105
5.2.4	Active faulting (neotectonics)	106
5.2.5	lectonics and sediment supply	100
5.3	Sediment compaction and its control on relative sea-level	106
5.4	How do we unravel these controls?	107
5.5	Multiple order sea-level fluctuations	108
5.5.1	Deposition of successive sequences during a longer-term eustatic sea-level fall	109
5.5.2	Deposition of successive sequences during longer-term eustatic sea-level rise	112
5.5.3	Deposition of successive sequences during a longer-term eustatic sea-level high	112
5.5.4	So what about subsidence?	112

5.6	The Carboniferous example revisited again	114
5.7	Summary	116
5.8	References	117
6 Co Gulf	ase study: Quaternary of the of Mexico	118
6.1	Geological setting	119
6.2	The Viosca Knoll borehole	119
6.2.1	Sedimentology	119
6.2.2	Age and palaeoclimates	120
6.2.3	Palaeobathymetry	123
6.2.4	Oxygen isotopes	123
6.2.5	Correlating Viosca Knoll with known periods of	125
63	Seismic reflection data	125
0.0		120
0.4	of the Viosca Knoll borehole	127
6.4.1	Depositional history	127
6.4.2	Summary of the general features of the	101
	systems tracts	131
6.5	Conclusions and summary	133
6.6	Reference	133
DAD	T 3 Siliciclastics case study:	
The	Book Cliffs	135
sedi	mentology of the Book Cliffs	135
7.1	Introduction to the geology of the Book Cliffs	135
7.2	Summary geological history and regional tectonic setting	138
7.3	Summary of the Book Cliffs stratigraphy	140
7.4	Review of the sedimentology of the Book Cliffs	142
7.4.1	Offshore facies association	143
7.4.2	Shallow-marine facies association	143
7.4.3	Coastal plain facies association	150
7.4.4	Barrier island, lagoon and estuarine facies associations	152

7.4.5	Braided fluvial systems	156
7.5	Summary	157
7.6	References	157

8 The parasequences of the Book Cliffs succession

-	-	-
1	5	o
	3	O

0 1	Parasaguancas in wave dominated coastal	
0.1	depositional systems	158
8.1.1	Complete vertical succession	159
8.1.2	Parasequences along a depositional dip profile	161
8.2	Parasequences in a river-dominated coastal	
	depositional system	165
8.3	Parasequences in the non-marine environment	t 167
8.4	Model for the formation of parasequences	
	within the Book Cliffs succession	173
8.5	Parasequence stacking patterns	177
8.5.1	Progradational stacking pattern	177
8.5.2	Retrogradational stacking pattern	177
8.5.3	Aggradational stacking pattern	178
8.6	Summary	178
8.7	References	178
0 5	equences and systems tracts	
in th	e Book Cliffs	179
9.1	Sequence boundaries	181
9.2	Falling stage and lowstand systems tracts	183
9.2.1	Aberdeen and Kenilworth falling stage	
	systems tracts	184
9.2.2	Sand-rich forced regression shoreline	10/
000	deposits (the Panther longue)	180
9.2.3	Prairie Canyon Member of the	
	Mancos Shale)	186
9.2.4	Braided fluvial forced lowstand deposits	
	(the Castlegate Sandstone)	188
9.3	Transgressive systems tracts	189
9.3.1	Lower transgressive systems tracts; incised	
000	valley fills	189
9.3.2	Upper transgressive systems tracts	193
9.4	Maximum flooding surfaces	196
9.5	Highstand systems tracts	196
9.6	Summary	196
9.7	References	197
10	Sequence stratigraphical evolution	
of th	Book Cliffs succession	108

10.1	Sequence hierarchy	200
10.2	Controls on sequence development	202
10.3	Milankovich processes and palaeoclimate	206
10.4	Summary	207
10.5	References	208

PART 4	Carbonates	209

11 (Carbonate depositional systems	209
11.1	Carbonate sediments are different	209
11.2	Carbonate platforms	214
11.3	Modern carbonate depositional environments	219
11.3.1	Climatic and oceanographic setting of Florida and the Bahamas	219
11.3.2	South Florida	220
11.3.3	The Great Bahama Bank	226
11.3.4	The southern Arabian Gulf	228
11.4	Summary	231
11.5	Further reading	233

12 Sequence stratigraphy of carbonate depositional systems 234

12.1	Major controls on the sequence	
	stratigraphy of carbonate platforms	234
12.1.1	Sediment supply and carbonate platform flooding	234
12.1.2	Relative sea-level change and sequence	
	development	235
12.1.3	Small-scale cycles or parasequences	237
12.1.4	Dissolution and cementation	238
12.1.5	Sediment partitioning and relative sea-level change	239
12.2	Sequence stratigraphy of rimmed carbonate	
	platforms	241
12.2.1	Transgressive systems tract	241
12.2.2	Highstand systems tract	242
12.2.3	Falling stage and lowstand systems tract	243
12.2.4	Variations in rimmed platform sequence	
	stratigraphy	244
12.3	Sequence stratigraphy of carbonate ramps	245
12.3.1	Transgressive systems tract	246
12.3.2	Highstand systems tract	247
12.3.3	Falling stage systems tract and lowstand	
	systems tract	247
12.3.4	Variations in carbonate ramp sequence	
	stratigraphy	24/
12.4	Numerical stratigraphical modelling	249
12.4.1	Controlling parameters	250
12.4.2	Modelling carbonate platform stratigraphy	251
12.5	Summary	254
12.6	References	255

13 Application of sequence stratigraphical analysis to ancient carbonate platforms 257

13.1	Case Study 1: Miocene of Mallorca	257
13.1.1	Setting	257
13.1.2	Facies and palaeoenvironments	257
13.1.3	Sequence stratigraphy	260
13.1.4	Numerical modelling of Cap Blanc section	262
13.2	Case Study 2: an Upper Jurassic ramp from NE Spain	265
13.2.1	Geological setting, stratigraphy and facies	265
13.2.2	Sequence stratigraphy	267
13.2.3	Stratigraphical modelling	270
13.3	Summary	273
13.4	References	274
Ackno	owledgements	274
Figure references for this book		275

279

Index