GIST

'Ideal for anyone who wishes to gain a practical understanding of spatial statistics and geostatistics. Difficult concepts are well explained and supported by excellent examples in R code, allowing readers to see how each of the methods is implemented in practice.'

Professor Tao Cheng, University College London

'A remarkable roadmap to the methods of spatial statistics ... case studies and computer code make the book extraordinarily interactive and will benefit both students and applied researchers across many disciplines.'

W. Ryan Davis, University of Texas at Dallas

'This is a valuable and enjoyable addition to applied spatial statistics, particularly because the reader, or rather user, of the book can see exactly what the authors are doing, and so may reproduce all the analyses using the code provided.'

Professor Roger S. Bivand, Norges Handelshøyskole Norwegian School of Economics

Spatial Statistics and Geostatistics is the definitive text on spatial statistics. Its focus is on spatial statistics as a distinct form of statistical analysis and it includes computer components for ArcGIS, R, SAS, and WinBUGS. The objective of the text is to illustrate the use of basic spatial statistics and geostatistics, as well as the spatial filtering techniques used in all the relevant programs and software.

A systematic overview of the fundamental spatial statistical and geostatistical methods, it explains and demonstrates methods and techniques in:

- spatial sampling
- spatial autocorrelation
- spatial composition
- local statistics
- methods for spatial interpolation in two-dimensions
- advanced topics including Bayesian methods, Monte Carlo simulation, error and uncertainty analysis

Fully explanatory, *Spatial Statistics and Geostatistics* uses boxed computer code, diagrams, illustrations, and includes further readings. Case study and exemplary materials and data sets are also included.

Yongwan Chun is a faculty member at The University of Texas at Dallas.

Daniel A. Griffith is an Ashbel Smith Professor at The University of Texas at Dallas.

Table of Contents

A	hout the Authors	xi
P	reface	xiii
-	4.1 4. Constitutionation at contracting fundation.	
1	Introduction	1
	1.1. Spatial statistics and geostatistics	1
	1.2. R basics	4
	oponal bearogeneury quality apparentimentation of the second	8
2	Spatial Autocorrelation	9
	2.1. Indices measuring spatial dependency	11
	2.1.1. Important properties of MC	
	2.1.2. Relationships between MC and GR, and MC	12
	and join count statistics	12
	2.2. Graphic portrayals: the Moran scatterplot and	15
	the semi-variogram plot	17
	2.3. Impacts of spatial autocorrelation	17
	2.4. Testing for spatial autocorrelation in regression residuals	19
	2.5. R code for concept implementations	10
	Dialatic Geographic Bows a journey to work complete	23
3	Spatial Sampling	24
	3.1. Selected spatial sampling designs	26
	3.2. Puerto Rico DEM data	
	3.3. Properties of the selected sampling designs, simulation	29
	2.2.1. Sempling simulation experiments on a unit square	
	5.5.1. Sampling sinulation experiments on a dust square	30
	2.2.2. Sampling simulation experiments on a hexagonal	
	5.5.2. Sampling sinulation experiments on a many	33
	A Decempling techniques: reusing sampled data	35
	3.4.1 The bootstrap	35
	2.4.2 The including	36
	3.5 Spatial autocorrelation and effective sample size	38
	3.6 P. code for concept implementations	40
	J.U. IC Code for concept impression	

-					
0	n	to	n	12	e
0		ie	11	u	э
~~					~

4 Spatial Composition and Configuration	44
4.1. Spatial heterogeneity: mean and variance	44
4.1.2 Testing for heterogeneity over a plane: regional	40
supra-partitionings	46
4.1.2.1 Establishing a relationship to the superpopulation	50
4.1.2.2. A null hypothesis rejection case with heterogeneity	50
4.1.3. lesting for heterogeneity over a plane:	
directional supra-partitionings	52
4.1.4. Covariates across a geographic landscape	54
4.2. Spatial weight matrices	5/
4.2.1. Weight matrices for geographic distributions	58
4.2.2. Weight matrices for geographic flows	59
4.3. Spatial heterogeneity: spatial autocorrelation	59
4.3.1. Regional differences	60
4.3.2. Directional differences: anisotropy	61
4.4. R code for concept implementations	65
5 Spatially Adjusted Regression and Related Spatial Econometrics	68
5.1. Linear regression	69
5.2. Nonlinear regression	72
5.2.1. Binomial/logistic regression	74
5.2.2. Poisson/negative binomial regression	76
5.2.2.1. Geographic distributions	76
5.2.2.2. Geographic flows: a journey-to-work example	80
5.3. R code for concept implementations	83
6 Local Statistics: Hot and Cold Spots	92
6.1. Multiple testing with positively correlated data	93
6.2. Local indices of spatial association	94
6.3. Getis–Ord statistics	97
6.4. Spatially varying coefficients	98
6.5. R code for concept implementations	100
7 Analyzing Spatial Variance and Covariance with Geostatistics	
and Related Techniques	103
7.1. Semi-variogram models	104
7.2. Co-kriging	106
7.2.1. DEM elevation as a covariate	106
7.2.2. Landsat 7 ETM+ data as a covariate	108

	7.3. Spatial linear operators	109
	7.3.1. Multivariate geographic data	111
	7.4. Eigenvector spatial filtering: correlation coefficient	
	decomposition	116
	7.5. R code for concept implementations	118
8	Methods for Spatial Interpolation in Two Dimensions	127
	8.1. Kriging: an algebraic basis	128
	8.2. The EM algorithm	132
	8.3. Spatial autoregression: a spatial EM algorithm	134
	8.4. Eigenvector spatial filtering: another spatial EM algorithm	137
	8.5. R code for concept implementations	140
9	More Advanced Topics in Spatial Statistics	149
	9.1. Bayesian methods for spatial data	150
	9.1.1. Markov chain Monte Carlo techniques	152
	9.1.2. Selected Puerto Rico examples	154
	9.2. Designing Monte Carlo simulation experiments	161
	9.2.1. A Monte Carlo experiment investigating eigenvector	
	selection when constructing a spatial filter	162
	9.2.2. A Monte Carlo experiment investigating eigenvector	
	selection from a restricted candidate set of vectors	163
	9.3. Spatial error: a contributor to uncertainty	165
	9.4. R code for concept implementations	166
R	eferences	169
Index		174

ix