OXFORD MASTER SERIES IN CONDENSED MATTER PHYSICS

Books in this series are written at the final year undergraduate and beginning graduate level, and provide straightforward introductions to key topics in condensed matter physics today. Background material and applications as well as pointers to more advanced work are included, along with ample tutorial material, examples, illustrations, chapter summaries, and graded problem sets (with some answers and hints).

Cover illustration: Atomic force microscopy image of a thin block copolymer film in the process of ordering. Image courtesy of J. Howse, Many materials are neither simple liquids nor crystalline solids of the type studied in other branches of solid state physics, and instead are conveniently classified as 'soft condensed matter'. Examples include glues, paints, soaps, polymer melts and most materials of biological origin. This book offers a coherent and clear introduction to the properties and behaviour of soft matter. It begins with a treatment of the general underlying principles: the relation of the structure and dynamics of solids and liquids to intermolecular forces, the thermodynamics and kinetics of phase transitions, and the principles of self-assembly. Then the specific properties of colloids, polymers, liquid crystals and self-assembling amphiphilic systems are treated within this framework. A concluding chapter illustrates how principles of soft matter physics can be used to understand properties of biological systems. The focus on the essentials and the straightforward approach make the book suitable for students with either a theoretical or an experimental bias. The level is appropriate for final year undergraduates and beginning graduate students in physics, chemistry, materials science, and chemical engineering.

Richard A. L. Jones is Professor of Physics at the University of Sheffield, England.

IN THE SAME SERIES

Structure and dynamics M. T. Dove Band theory and electronic properties of solids J. Singleton Optical properties of solids A. M. Fox Magnetism in condensed matter S. J. Blundell Superconductivity J. F. Annett Soft condensed matter R. A. L. Jones

www.oup.com

Contents

1	Intr	oduction and overview	1
	1.1	What is soft condensed matter?	1
	1.2	Soft matter-an overview	2
2	For	ces, energies, and timescales in condensed matter	5
	2.1	Introduction	5
	2.2	Gases, liquids, and solids	5
		2.2.1 Intermolecular forces	5
		2.2.2 Condensation and freezing	8
	2.3	Viscous, elastic, and viscoelastic behaviour	10
		2.3.1 The response of matter to a shear stress	10
		2.3.2 Understanding the mechanical response of matter at a	
		molecular level	13
	2.4	Liquids and glasses	16
		2.4.1 Practical glass-forming systems	16
		2.4.2 Relaxation time and viscosity in glass-forming liquids	17
		2.4.3 The experimental glass transition	18
		2.4.4 Understanding the glass transition	21
3	Pha	se transitions	25
	3.1	Phase transitions in soft matter	25
	3.2	Liquid-liquid unmixing-equilibrium phase diagrams	26
		3.2.1 Interfaces between phases and interfacial tension	31
	3.3	Liquid-liquid unmixing-kinetics of phase separation	32
		3.3.1 Two mechanisms of phase separation	32
		3.3.2 Spinodal decomposition	33
		3.3.3 Nucleation	37
		3.3.4 Growth in the late stages of phase separation	38
	3.4	The liquid-solid transition-freezing and melting	41
		3.4.1 Kinetics of the liquid-solid transition-homogeneous	
		nucleation	42
		3.4.2 Kinetics of the liquid-solid transition-heterogeneous	
		nucleation	44
		3.4.3 Solidification—stability of a growing solidification front	45
4	Col	loidal dispersions	49
	4.1	Introduction	49
	4.2	A single colloidal particle in a liquid-Stokes' law and Brownian	
		motion	50

		421	Stokes' law	50
		422	Brownian motion and the Einstein equation	50
	43	Forces	s between colloidal particles	52
		431	Interatomic forces and interparticle forces	52
		432	Van der Waals forces	53
		433	Flectrostatic double-layer forces	58
		434	Stabilising polymers with grafted polymer layers	60
		435	Depletion interactions	61
	44	Stabil	ity and phase behaviour of colloids	62
	1.1	441	Crystallisation of bard-sphere colloids	62
		4.4.1	Colloids with longer ranged repulsion	65
		4.4.2	Colloids with weakly attractive interactions	66
		4.4.3	Colloids with strongly attractive interactions	67
	15	Flow	in concentrated dispersions	69
	4.5	110w 1	in concentrated dispersions	00
5	Poly	mers		73
-	5.1	Introd	luction	73
	52	The v	ariety of polymeric materials	73
	0.2	5.2.1	Polymer chemistry	74
		522	Stereochemistry	75
		523	Architecture	76
		524	Copolymers	76
		525	Physical state	77
	53	Rando	m walks and the dimensions of polymer chains	77
	0.0	531	The freely jointed chain and its Gaussian limit	78
		532	Real polymer chains_short-range correlations	70
		533	Excluded volume the theta temperature and	12
		0.0.0	coil-globule transitions	80
		534	Chain statistics in polymer melts—the Flory theorem	82
		535	Measuring the size of polymer chains	82
		536	Polymers at interfaces—adsorbed and grafted chains	84
	54	Rubb	er elasticity	85
	5.5	Visco	elasticity in polymers and the reptation model	86
	0.0	551	Characterising the viscoelastic behaviour of polymers	86
		552	Linear viscoelasticity and the Boltzmann superposition	00
		5.5.2	principle	88
		553	The temperature dependence of viscoelastic properties:	00
		51515	time_temperature superposition	88
		554	Viscoelasticity: experimental results for monodisperse	00
		0.0.1	linear polymer melts	80
		555	Entanglements	90
		556	The tube model and the theory of reptation	91
		5.5.7	Modifications to reptation theory	93
			incomo to replanen meery	
6	Gel	ation		95
	6.1	Introd	luction	95
	6.2	Classe	es of gel	96
		6.2.1	Chemical gels	96
		6.2.2	Physical gels	97

	6.3	The th	eory of gelation	97	
		6.3.1	The percolation model	97	
		6.3.2	The classical theory of gelation-the Flory-Stockmayer		
			model	98	
		6.3.3	Non-classical exponents in the percolation model	100	
		6.3.4	The elasticity of gels	100	
7	Mol	ecular	order in soft condensed matter—liquid crystallinity	104	
	7.1	Introd	uction	104	
	7.2	Introd	uction to liquid crystal phases	105	
	7.3	The ne	ematic/isotropic transition	107	
	7.4	Distor	tions and topological defects in liquid crystals	111	
		7.4.1	Generalised rigidity and the elastic constants of a nematic		
			liquid crystal	111	
		7.4.2	Boundary effects	112	
		7.4.3	Disclinations, dislocations, and other topological		
			defects	113	
	7.5	The el	ectrical and magnetic properties of liquid crystals	114	
	7.6	The Fi	rederiks transition and liquid crystal displays	116	
	7.7	Polym	her liquid crystals	118	
		7.7.1	Rigid polymers	118	
		7.7.2	Helix-coil transitions	118	
		7.7.3	The isotropic/nematic transition for ideal hard rods	122	
		1.1.4	Transitions in real lyotropic systems	126	
		1.1.5	Thermotropic liquid crystal phases	126	
8	Mo	lecular	order in soft condensed matter—crystallinity in		
	poly	ymers		129	
	8.1	Introd	uction	129	
	8.2	2 Hierarchies of structure			
	8.3	Chain	-folded crystals	131	
9	Sup	oramole	ecular self-assembly in soft condensed matter	136	
	9.1	Introd	luction	136	
	9.2	Self-a	ssembled phases in solutions of amphiphilic molecules	136	
		9.2.1	Why oil and water do not mix	136	
		9.2.2	Aggregation and phase separation	137	
		9.2.3	The aggregation of amphiphilic molecules	139	
		9.2.4	Spherical micelles and the CMC	142	
		9.2.5	Cylindrical micelles	142	
		9.2.6	Bilayers and vesicles	144	
		9.2.7	The elasticity and fluctuations of membranes	145	
		9.2.8	The phase behaviour of concentrated amphiphile	147	
		0.2.0	Complex phases in surfactant solutions and	14/	
		9.2.9	microemulcions	150	
	0.2	Colf.	inicroentuisions	150	
	9.3	0.2.1	Dhese separation in polymer mixtures and the	151	
		9.5.1	nase separation in porymer inixtures and the	152	
			porymen porymer interface	154	

		9.3.2	Microphase separation in copolymers	155
		9.3.3	Block copolymer phase diagrams	156
10	Soft	matte	r in nature	159
	10.1	Introd	luction	159
	10.2	The co	omponents and structures of life	160
	10.3	Nucle	ic acids	161
	10.4	Protei	ns	165
		10.4.1	Primary, secondary, and tertiary structure of proteins	165
		10.4.2	Protein folding	167
		10.4.3	Interactions between proteins: misfolding, aggregation,	
			and crystallisation	170
		10.4.4	Protein misfolding, gelation, and amyloidogenesis	172
	10.5	Polysa	accharides	173
	10.6	Memb	oranes	174
A	Son	ne resul	Its from statistical mechanics	178
	A.1	Entrop	py and the second law of thermodynamics	178
	A.2	Energ	y, entropy, and temperature	179
	A.3	Free e	energy and the Gibbs function	180
	A.4	The cl	hemical potential	181
B	The	distrit	oution function of an ideal random walk	182
	B.1	Direct	t enumeration of the statistical weight	182
	B.2	Rando	om walks and the diffusion equation	183
с	Ans	wers to	o selected problems	185
с	Ans	wers to	selected problems	185
	C.1	Chapt	er 2	185
	C.2	Chapt	er 3	185
	C.3	Chapt	er 4	186
	C.4	Chapt	er 5	186
	C.5	Chapt	er 6	187
	C.6	Chapt	er 7	187
	C.7	Chapt	er 8	187
	C.8	Chapte	er 9	187
	C.9	Chapte	er 10	188
Bib	oliogi	raphy		189
	law			
INC	iex			103