Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts.

Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics.

This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature.

"This wonderful book will appeal to students and researchers of all stripes: it begins at an undergraduate level and ends with deep connections to toric varieties, compactifications, and degenerations. In between, the authors provide the first complete proofs in book form of many fundamental results in the subject. The pages are sprinkled with illuminating examples, applications, and exercises, and the writing is lucid and meticulous throughout. It is that rare kind of book which will be used equally as an introductory text by students and as a reference for experts."

-Matt Baker, Georgia Institute of Technology

Tropical geometry is an exciting new field, which requires tools from various parts of mathematics and has connections with many areas. A short definition is given by Maclagan and Sturmfels: "Tropical geometry is a marriage between algebraic and polyhedral geometry". This wonderful book is a pleasant and rewarding journey through different landscapes, inviting the readers from a day at a beach to the hills of modern algebraic geometry. The authors present building blocks, examples and exercises as well as recent results in tropical geometry, with ingredients from algebra, combinatorics, symbolic computation, polyhedral geometry and algebraic geometry. The volume will appeal both to beginning graduate students willing to enter the field and to researchers, including experts.

-Alicia Dickenstein, University of Buenos Aires, Argentina

For additional information and updates on this book, visit

www.ams.org/bookpages/gsm-161

Contents

Preface

Chapter 1. Tropical Islands	1
§1.1. Arithmetic	2
§1.2. Dynamic Programming	7
§1.3. Plane Curves	11
§1.4. Amoebas and their Tentacles	17
§1.5. Implicitization	21
§1.6. Group Theory	25
§1.7. Curve Counting	31
§1.8. Compactifications	34
§1.9. Exercises	39
Chapter 2. Building Blocks	43
§2.1. Fields	43
§2.2. Algebraic Varieties	52
§2.3. Polyhedral Geometry	58
§2.4. Gröbner Bases	65
§2.5. Gröbner Complexes	74
§2.6. Tropical Bases	81
§2.7. Exercises	89
Chapter 3. Tropical Varieties	
§3.1. Hypersurfaces	93

ix

§3.2.	The Fundamental Theorem	102
§3.3.	The Structure Theorem	110
§3.4.	Multiplicities and Balancing	118
§3.5.	Connectivity and Fans	128
§3.6.	Stable Intersection	133
§3.7.	Exercises	149
Chapter	4. Tropical Rain Forest	153
§4.1.	Hyperplane Arrangements	153
§4.2.	Matroids	161
§4.3.	Grassmannians	170
§4.4.	Linear Spaces	182
§4.5.	Surfaces	192
§4.6.	Complete Intersections	201
§4.7.	Exercises	214
Chapter	5. Tropical Garden	221
§5.1.	Eigenvalues and Eigenvectors	222
§5.2.	Tropical Convexity	228
§5.3.	The Rank of a Matrix	243
§5.4.	Arrangements of Trees	255
§5.5.	Monomials in Linear Forms	268
§5.6.	Exercises	273
Chapter	6. Toric Connections	277
§6.1.	Toric Background	278
§6.2.	Tropicalizing Toric Varieties	281
§6.3.	Orbits	291
§6.4.	Tropical Compactifications	297
§6.5.	Geometric Tropicalization	309
§6.6.	Degenerations	322
§6.7.	Intersection Theory	334
§6.8.	Exercises	346
Bibliogr	aphy	351
Index		361