Contents

22

45

1 1	Surv	ey of the Elementary Principles
	1.1	Mechanics of a Particle 1
	1.2	Mechanics of a System of Particles 5
	1.3	Constraints 12
	1.4	D'Alembert's Principle and Lagrange's Equations 16
	1.5	Velocity-Dependent Potentials and the Dissipation Function
	1.6	Simple Applications of the Lagrangian Formulation 24
2 1	■ Vari	ational Principles and Lagrange's Equations
	2.1	Hamilton's Principle 34
	2.2	Some Techniques of the Calculus of Variations 36
	2.3	Derivation of Lagrange's Equations from Hamilton's Principl
	2.4	Extending Hamilton's Principle to Systems with Constraints
	2.5	Advantages of a Variational Principle Formulation 51
	2.6	Conservation Theorems and Symmetry Properties 54
	2.7	Energy Function and the Conservation of Energy 60
3 1	■ The	Central Force Problem
	3.1	Reduction to the Equivalent One-Body Problem 70
	3.2	The Equations of Motion and First Integrals 72
	3.3	The Equivalent One-Dimensional Problem, and Classification of Orbits 76
	3.4	The Virial Theorem 83
	3.5	The Differential Equation for the Orbit, and Integrable Power-Law Potentials 86
	3.6	Conditions for Closed Orbits (Bertrand's Theorem) 89
	3.7	The Kepler Problem: Inverse-Square Law of Force 92
	3.8	The Motion in Time in the Kepler Problem 98
	3.9	The Laplace-Runge-Lenz Vector 102
	3.10	Scattering in a Central Force Field 106
	3.11	Transformation of the Scattering Problem to Laboratory

Coordinates 114

3.12

The Three-Body Problem 121

4	■ The	Kinematics of Rigid Body Motion	134
	4.1	The Independent Coordinates of a Rigid Body 134	
	4.2	Orthogonal Transformations 139	
	4.3	Formal Properties of the Transformation Matrix 144	
	4.4	The Euler Angles 150	
	4.5	The Cayley-Klein Parameters and Related Quantities 154	
	4.6	Euler's Theorem on the Motion of a Rigid Body 155	
	4.7	Finite Rotations 161	
	4.8	Infinitesimal Rotations 163	
	4.9	Rate of Change of a Vector 171	
	4.10	The Coriolis Effect 174	
5	■ The	Rigid Body Equations of Motion	184
	5.1	Angular Momentum and Kinetic Energy of Motion about a Point 184	
	5.2	Tensors 188	
	5.3	The Inertia Tensor and the Moment of Inertia 191	
	5.4	The Eigenvalues of the Inertia Tensor and the Principal Axis Transformation 195	
	5.5	Solving Rigid Body Problems and the Euler Equations of Motion 198	
	5.6	Torque-free Motion of a Rigid Body 200	
	5.7	The Heavy Symmetrical Top with One Point Fixed 208	
	5.8	Precession of the Equinoxes and of Satellite Orbits 223	
	5.9	Precession of Systems of Charges in a Magnetic Field 230	
6 1	■ Osc	illations	238
	6.1	Formulation of the Problem 238	
	6.2	The Eigenvalue Equation and the Principal Axis Transformation	241
	6.3	Frequencies of Free Vibration, and Normal Coordinates 250	
	6.4	Free Vibrations of a Linear Triatomic Molecule 253	
	6.5	Forced Vibrations and the Effect of Dissipative Forces 259	
	6.6	Beyond Small Oscillations: The Damped Driven Pendulum and the Josephson Junction 265	ne
7	■ The	Classical Mechanics of the	
	Spe	cial Theory of Relativity	276
	7.1	Basic Postulates of the Special Theory 277	
	7.2	Lorentz Transformations 280	
	7.3	Velocity Addition and Thomas Precession 282	
	7.4	Vectors and the Metric Tensor 286	

Contents	vi

	7.5	1-Forms and Tensors 289	
	7.6	Forces in the Special Theory; Electromagnetism 297	
	7.7	Relativistic Kinematics of Collisions and Many-Particle Systems 300	
	7.8	Relativistic Angular Momentum 309	
	7.9	The Lagrangian Formulation of Relativistic Mechanics 312	
	7.10	Covariant Lagrangian Formulations 318	
	7.11	Introduction to the General Theory of Relativity 324	
8	The .	Hamilton Equations of Motion	334
	8.1	Legendre Transformations and the Hamilton Equations of Motion 334	
	8.2	Cyclic Coordinates and Conservation Theorems 343	
	8.3	Routh's Procedure 347	
	8.4	The Hamiltonian Formulation of Relativistic Mechanics 349	
	8.5	Derivation of Hamilton's Equations from a	
	0.6	Variational Principle 353	
	8.6	The Principle of Least Action 356	
9	Can	onical Transformations	36
	9.1	The Equations of Canonical Transformation 368	
	9.2	Examples of Canonical Transformations 375	
	9.3	The Harmonic Oscillator 377	
	9.4	The Symplectic Approach to Canonical Transformations 381	
	9.5	Poisson Brackets and Other Canonical Invariants 388	
	9.6	Equations of Motion, Infinitesimal Canonical Transformations, and Conservation Theorems in the Poisson Bracket Formulation 396	
	9.7	The Angular Momentum Poisson Bracket Relations 408	
	9.8	Symmetry Groups of Mechanical Systems 412	
	9.9	Liouville's Theorem 419	
10	I Ham	nilton-Jacobi Theory and Action-Angle Variables	43
	10.1		
	10.2	The Harmonic Oscillator Problem as an Example of the Hamilton–Jacobi Method 434	
	10.3	The Hamilton-Jacobi Equation for Hamilton's Characteristic Function 440	
	10.4	Separation of Variables in the Hamilton-Jacobi Equation 444	
	10.5	Ignorable Coordinates and the Kepler Problem 445	
	10.6	Action-angle Variables in Systems of One Degree of Freedom 452	6

viii

	10.7	Action-Angle Variables for Completely Separable Systems 457 The Kepler Problem in Action-angle Variables 466	
11 🔳	Clas	sical Chaos	483
	11.1	Periodic Motion 484	
	11.2	Perturbations and the Kolmogorov-Arnold-Moser Theorem 487	
	11.3	Attractors 489	
	11.4	Chaotic Trajectories and Liapunov Exponents 491	
	11.5	Poincaré Maps 494	
	11.6	Hénon-Heiles Hamiltonian 496	
	11.7	Bifurcations, Driven-damped Harmonic Oscillator, and Parametric Resonance 505	
	11.8	The Logistic Equation 509	
	11.9	Fractals and Dimensionality 516	
12 ■	Can	onical Perturbation Theory	526
	12.1	Introduction 526	
	12.2	Time-dependent Perturbation Theory 527	
	12.3	Illustrations of Time-dependent Perturbation Theory 533	
	12.4	Time-independent Perturbation Theory 541	
	12.5	Adiabatic Invariants 549	
13		oduction to the Lagrangian and Hamiltonian nulations for Continuous Systems and Fields	558
	13.1	The Transition from a Discrete to a Continuous System 558	
	13.2	The Lagrangian Formulation for Continuous Systems 561	
	13.3	The Stress-energy Tensor and Conservation Theorems 566	
	13.4	Hamiltonian Formulation 572	
		Relativistic Field Theory 577	
	13.6	Examples of Relativistic Field Theories 583	
	13.7	Noether's Theorem 589	
ppendix A	-	r Angles in Alternate Conventions	
	and	Cayley-Klein Parameters	601
ppendix B	Gro	ups and Algebras	605
	Sele	cted Bibliography	617
	Autl	nor Index	623
	Subj	ject Index	625