Physics of Radio-Frequency Plasmas

Low-temperature radio-frequency (RF) plasmas are essential in various sectors of advanced technology, from micro-engineering to spacecraft propulsion systems and efficient sources of light. The subject lies at the complex interfaces between physics, chemistry and engineering. Focusing mostly on physics, this book will interest graduate students and researchers in applied physics and electrical engineering.

The book incorporates a cutting-edge perspective on RF plasmas. It also covers basic plasma physics, including transport in bounded plasmas and electrical diagnostics. Its pedagogic style engages readers, helping them to develop physical arguments and mathematical analyses. Worked examples apply the theories covered to realistic scenarios, and over 100 in-text questions let readers put their newly acquired knowledge to use and gain confidence in applying physics to real laboratory situations.

Pascal Chabert is Research Director within CNRS. He currently leads the Low-Temperature Plasmas group of the 'Laboratoire de Physique des Plasmas' at Ecole Polytechnique. His expertise is in plasma physics and plasma processing.

Nicholas Braithwaite is Professor of Engineering Physics at The Open University, where his research group works on the physics of 'technological' plasmas. He has been on the editorial board of the journal *Plasma Sources Science and Technology* since 1998.

Cover illustration: image courtesy of Vladimir Šamara. Cover designed by Hart McLeod Ltd

Contents

ip.	Acknowledgements			e vii
1	Introduction			1
三十四のと	1.1	Plasmas		1
	1.2	Plasma processing for microelectronics		3
	1.3	Plasma propulsion		9
	1.4	Radio-frequency plasmas: E, H and W-modes		14
	1.5	What lies ahead		17
2	Plasma dynamics and equilibrium			18
	2.1	The microscopic perspective		19
	2.2	The macroscopic perspective		37
	2.3	Global particle and energy balance		41
	2.4	The electrodynamic perspective		45
	2.5	Review of Chapter 2		55
3	Bounded plasma			59
	3.1	The space charge sheath region		61
	3.2	The plasma/sheath transition		72
	3.3	The plasma region: transport models		78
	3.4	Review of Chapter 3		90
4	Radio-frequency sheaths			96
	4.1	Response times		97
	4.2	Ion dynamics		102
	4.3	Electron dynamics		110
	4.4	Analytical models of (high-frequency) RF sheaths		116
	4.5	Summary of important results		130
5	Single-frequency capacitively coupled plasmas			131
	5.1	A constant ion density, current-driven symmetrical model		133
	52	A non-uniform ion density, current-driven model		146

	5.3	Global model	154
	5.4	Other regimes and configurations	165
	5.5	Summary of important results	174
6	Multi	-frequency capacitively coupled plasmas	176
	6.1	Dual-frequency CCP in the electrostatic approximation	177
	6.2	Electromagnetic regime at high frequency	187
	6.3	Summary of important results	218
7	Induc	tively coupled plasmas	219
	7.1	Electromagnetic model	222
	7.2	Impedance of the plasma alone	233
	7.3	The transformer model	236
	7.4	Power transfer efficiency in pure inductive discharges	241
	7.5	Capacitive coupling	243
	7.6	Global model	246
	7.7	Summary of important results	252
	7.8	Further considerations	253
8	Helic	on plasmas	260
	8.1	Parallel propagation in an infinite plasma	264
	8.2	Helicon wave propagation in a cylinder	268
	8.3	Conditions for existence of the helicon modes	276
	8.4	Wave power absorption: heating	277
	8.5	E-H-W transitions	283
	8.6	Summary of important results	286
9	Real	plasmas	287
	9.1	High-density plasmas	288
	9.2	Magnetized plasmas	293
	9.3	Electronegative plasmas	298
	9.4	Expanding plasmas	313
0	Elect	rical measurements	318
	10.1	Electrostatic probes	319
	10.2	Electrostatic probes for RF plasmas	340
	10.3	A retarding field analyser (RFA)	348
	10.4	Probing with resonances and waves	354
	10.5	Summary of important results	365
	Appe	ndix: Solutions to exercises	368
	Refer	ences	375
	Index	le-frequency capacitively coupled plasmus	383

Contents

vi