CONTENTS

Preface xi Acknowledgments xiv

PART I Introduction and the physical environment 1

- 1 What is ecology in action? 2
 - 1.1 What are ecological questions? 4
 - 1.2 How do ecologists test hypotheses about ecological processes? 5
 - How do ecologists use observation, modeling, and experimentation? 10
 - 1.4 How do ecologists ask questions that link different levels of the biological hierarchy?
 12 Summary 18 Further reading 19 End-of-chapter questions 19
- 2 The physical environment 22
 - 2.1 How do physical principles influence climatic variation across the globe? 24
 - 2.2 What are terrestrial biomes? 29
 - 2.3 How do biomes change over time? 38
 - 2.4 What are aquatic biomes? 41
 Summary 54
 Further reading 54
 End-of-chapter questions 54

PART II Evolutionary and organismal ecology 57

3 Evolution and adaptation 58

- 3.1 How do ecologists use genetic and molecular approaches to study evolution? 60
- 3.2 What four processes interact to bring about evolutionary change? 61
- 3.3 Does a changing environment influence the costs and benefits of adaptation? 67
- 3.4 How do natural selection and sexual selection influence an individual's fitness? 71
- 3.5 How might natural selection cause new species to evolve? 73
- 3.6 How do evolutionary ecologists unravel evolutionary relationships? 77
 Summary 83
 Further reading 83
 End-of-chapter questions 84

- 4 Physiological and evolutionary ecology of acquiring nutrients and energy 86
 - 4.1 How does energy enter an ecosystem? 88
 - 4.2 What is the impact of nutrient availability on species distribution and abundance? 97
 - 4.3 What are energy sources for heterotrophs? 100
 - 4.4 How does the ratio of available nutrients influence ecological processes within a community? 107
 - 4.5 How can organisms avoid being eaten? 109
 Summary 113
 Further reading 113
 End-of-chapter questions 114
- 5 Physiological and evolutionary ecology of temperature and water relations 116
 - 5.1 How do organisms respond to physiological challenges over different time scales? 118
 - 5.2 How does body temperature influence physiological performance? 119
 - 5.3 What determines an organism's water balance? 128
 - 5.4 How are temperature regulation and water regulation functionally linked? 134
 - 5.5 How do temperature, solute concentration, and water availability affect species distribution and abundance? 137
 - 5.6 Is Earth's changing thermal and hydrologic environment influencing the distribution and abundance of species? 141
 Summary 143
 Further reading 144
 End-of-chapter questions 144

6 Behavioral ecology 146

- 6.1 How does natural selection operate on animal behavior? 148
- 6.2 How can cost-benefit approaches address questions about spatial distributions, foraging, and mating behavior? 152
- 6.3 What physiological and ecological factors influence the evolution of mating systems? 158
- 6.4 How can indirect selection lead to cooperative behavior among relatives? 164
- 6.5 How do game theory models help explain the evolution of cooperation among unrelated individuals? 169
 Summary 173
 Further reading 173
 End-of-chapter questions 174

Contents

- 7 Bernd Heinrich: studying adaptation in the field and the laboratory 176
 - 7.1 How did early experiences inspire Heinrich's approach to science? 177
 - 7.2 How do sphinx moths thermoregulate? 179
 - 7.3 How do bumblebees thermoregulate? 182
 - 7.4 How do slow-moving butterflies avoid being eaten? 184
 - 7.5 Why do ravens yell? 186
 - 7.6 How smart are ravens? 187
 Summary 190
 Further reading 190
 End-of-chapter questions 191

PART III Population ecology 193

- 8 Life history evolution 194
 - 8.1 How does allocation of parental resources to reproduction influence a species' life history traits? 196
 - 8.2 What is the tradeoff between parental resources invested in any one reproductive event and number of lifetime reproductive events? 203
 - 8.3 How does environmental variation select for phenotypic plasticity in life history traits? 209 Summary 215
 Further reading 216
 End-of-chapter questions 216

9 Distribution and dispersal 218

- 9.1 How are individuals distributed within populations? 220
- 9.2 How do species distribution patterns change over time? 223
- 9.3 In what ways do abiotic factors influence the distribution of populations? 229
- 9.4 In what ways do biotic factors influence the distribution of populations? 232
- 9.5 How does ecological niche theory help ecologists understand a species' current distribution and predict its future distribution? 235
 Summary 241
 Further reading 241
 End-of-chapter questions 242

10 Population abundance and growth 246

- 10.1 How do ecologists estimate population size? 248
- 10.2 How do mathematical models project population growth rates? 253

- 10.3 How do density-independent and densitydependent factors influence birth and death rates? 259
- 10.4 How do ecologists use the carrying capacity to model density-dependent changes in birth and death rates? 263
- 10.5 What factors will influence the growth rates of future human populations? 265
 Summary 270
 Further reading 271
 End-of-chapter questions 271

11 Conservation ecology 274

- 11.1 Why do very small populations have a high extinction rate? 276
- 11.2 How do ecologists use mathematical models to predict population viability? 277
- 11.3 How can immigration of individuals from nearby populations maintain species richness and high population size? 282
- 11.4 How can human-mediated changes to habitats cause species to become endangered, or to go extinct?
 288
 Summary 297
 Further reading 297
 End-of-chapter questions 298
- 12 Jane Goodall and Anne Pusey: researching the chimpanzees of Gombe 300
 - 12.1 Why did Jane Goodall study chimpanzees? 302
 - 12.2 What did Goodall learn during her years at Gombe? 303
 - 12.3 How did environmental activism change Goodall's career? 307
 - 12.4 How have Anne Pusey and other researchers collaborated in chimpanzee research? 310
 - 12.5 What ecological factors threaten the viability of the Gombe chimpanzee population? 315
 Summary 321
 Further reading 322
 End-of-chapter questions 322

PART IV Community ecology 325

13 Interspecific competition 326

- 13.1 What types of resources do organisms compete for? 328
- 13.2 How can interspecific competition lead to competitive exclusion? 331

ix

- 13.3 How do theoretical models and empirical studies identify conditions promoting the coexistence of competing species? 333
- 13.4 How do indirect effects and asymmetric interactions operate in natural communities? 343
 Summary 347
 Further reading 348
 End-of-chapter questions 348
- 14 Predation and other exploitative interactions 350
 - 14.1 What are the different types of exploitative interactions? 352
 - 14.2 How do exploiters regulate the abundance of their prey or hosts? 352
 - 14.3 How do prey and hosts defend themselves? 356
 - 14.4 How does the interaction between exploiters and their prey or hosts evolve over time? 361
 - 14.5 How do theoretical models in association with empirical studies describe the outcomes of exploitative interactions? 363
 Summary 374
 Further reading 374
 End-of-chapter questions 375

15 Facilitation 378

- 15.1 What are the consequences of disrupting mutualisms? 380
- 15.2 What are the benefits of facilitative interactions? 385
- 15.3 What conditions favor the evolution of facilitative interactions? 391
 Summary 398
 Further reading 399
 End-of-chapter questions 399

16 Complex interactions and food webs 402

- 16.1 How do ecologists explore community processes across scales of space and time? 404
- 16.2 How are ecological communities structured? 406
- 16.3 How do food webs describe community structure? 411
- 16.4 What factors influence community structure and functioning? 415Summary 426Further reading 427
 - End-of-chapter questions 427

- 17 Biological diversity and community stability 430
 - 17.1 How do ecologists describe and measure biological diversity? 432
 - 17.2 How do biotic and abiotic factors influence community species diversity? 438
 - 17.3 What is the relationship between species diversity and community stability? 448
 Summary 453
 Further reading 454
 End-of-chapter questions 454
- 18 Dan Janzen and Winnie Hallwachs: community interactions and tropical restoration through biodiversity conservation 456
 - 18.1 What experiences and events launched Janzen's career? 457
 - 18.2 How did viewing community interactions from the perspective of the organism and its evolutionary history shape Janzen's research program? 459
 - 18.3 What factors motivated Janzen's conservation efforts in Costa Rica? 466
 - 18.4 What factors supported the restoration of Santa Rosa, and ACG as a whole, and the continuation of scientific research there? 468 Summary 474 Further reading 474 End-of-chapter questions 475

PART V Ecosystem and global ecology 477

19 Ecosystem structure and energy flow 478

- 19.1 How do climate and nutrients influence ecosystem production? 480
- 19.2 What are the important components of ecosystem structure? 486
- 19.3 What is the relationship between food chain length and ecosystem structure and functioning? 491
 Summary 496
 Further reading 496
 End-of-chapter questions 497

20 Nutrient cycles: global, regional, and local 500

- 20.1 How do microorganisms move nitrogen compounds within and between ecosystems? 502
- 20.2 How do biological, geological, chemical, and physical processes interact in the global nitrogen cycle? 505

Contents

- 20.3 How do oceans, freshwater systems, and soils interact in the global phosphorus cycle? 509
- 20.4 What processes cycle nutrients within ecosystems? 511 Summary 519 Further reading 519 End-of-chapter questions 520

21 Disturbance and succession 522

- 21.1 What is primary succession, and when does it occur? 524
- 21.2 What is secondary succession, and when does it occur? 528
- 21.3 What mechanisms underlie the process of succession? 531
- 21.4 How do animal communities respond to disturbance? 533
- 21.5 Can an ecosystem shift abruptly from one stable state to another? 540
 Summary 545
 Further reading 545
 End-of-chapter questions 546

22 Geographic and landscape ecology 548

- 22.1 What are the major components of island biogeography theory? 550
- 22.2 How do historical events help explain the current distribution of a species or taxonomic group? 557
- 22.3 How does landscape structure influence the distribution and abundance of species? 566
 Summary 575
 Further reading 575
 End-of-chapter questions 576

23 The carbon cycle and climate change ecology 578

23.1 How do biogeochemical processes move carbon through the global system? 580

- 23.2 How do greenhouse gases directly influence Earth's temperature? 586
- 23.3 How do indirect effects and feedback interactions influence global climate? 588
- 23.4 What are climate models and what do they tell us? 591
- 23.5 Are natural ecosystems changing in response to climate change? 596
 Summary 603
 Further reading 604
 End-of-chapter questions 604
- 24 Jane Lubchenco: community, ecosystem, and global ecology 608
 - 24.1 How did NOAA respond to the explosion of the Deepwater Horizon? 609
 - 24.2 How did Lubchenco get started in marine ecology? 610
 - 24.3 How did moving to New England affect Lubchenco's research direction? 613
 - 24.4 What factors influence the structure and functioning of temperate and tropical ecosystems? 620
 - 24.5 How did Lubchenco expand her scope into politics and scientific communication? 623 Summary 628 Further reading 628 End-of-chapter questions 629

Epilogue 632

Ecological research programs and hierarchical structure 632 Asking ecological questions 633

Glossary 634 References 642 Figure and quotation credits 663 Index 683

) Co