1944 Fourier analysis on finite Abelian granustaupe alliquoid-anus adl CONTENTS

the Mean square convergence sometimes and the 195

contents refulitive total actions as a

Pref	ace	ix
1,0	ejer's theorem for Fourier transforms	
1	Introduction	
	Proof of Fejér's theorem	
	Weyl's equidistribution theorem	11
	The Weierstrass polynomial approximation theorem	18
	A second proof of Weierstrass's theorem	25
	Hausdorff's moment problem	30
	The importance of linearity	32
	Compass and tides	
9	The simplest convergence theorem	39
	The rate of convergence	41
11	A nowhere differentiable function	46
12	Reactions	49
13	Monte Carlo methods	51
15	Pointwise convergence	53
16	Behaviour at points of discontinuity I	55
17	Behaviour at points of discontinuity II	59
18	A Fourier series divergent at a point	63
19	Pointwise convergence, the answer	82
20	The undisturbed damped oscillator does not explode	85
21	The disturbed damped linear oscillator does not explode	95
23	The linear damped oscillator with periodic input	97
27	Poisson summation	100
28	Dirichlet's problem	106
29	Potential theory with smoothness assumptions	107
30	An example of Hadamard	111
31	Potential theory without smoothness assumptions	114
32	Mean square approximation I	122
33	Mean square approximation II	133

silivuoid 85

34	Mean square convergence	135
35	The isoperimetric problem I	140
36	The isoperimetric problem II	141
37	The Sturm-Liouville equation I	142
38	Liouville	144
39	The Sturm-Liouville equation II	157
40	Orthogonal polynomials	164
41	Gaussian quadrature	168
43	Tchebychev and uniform approximation I	171
44	The existence of the best approximation	178
45	Tchebychev and uniform approximation II	179
46	Introduction to Fourier transforms	190
47	Change in the order of integration I	191
48	Change in the order of integration II	192
49	Fejér's theorem for Fourier transforms	195
50	Sums of independent random variables	197
51	Convolution	199
52	Convolution on T	200
53	Differentiation under the integral	206
54	Lord Kelvin	211
55	The heat equation	212
57	The age of the earth II	216
59	Weierstrass's proof of Weierstrass's theorem	219
60	The inversion formula	220
63	A second approach	244
64	The wave equation	245
71	The central limit theorem II	246
72	Stability and control	247
73	Instability	248
74	The Laplace transform	255
75	Deeper properties	262
76	Poles and stability	284
77	A simple time delay equation	293
79	Many dimensions	298
80	Sums of random vectors	306
81	A chi squared test	
82	Haldane on fraud	310
86	Will a random walk return?	311
87	Will a Brownian motion return?	313
89	Will a Brownian motion tangle?	314
94	Why do we compute?	315
95	The diameter of stars	321
97	Fourier analysis on the roots of unity	326

	Contents	VII
99	How fast can we multiply?	331
102	A good code?	335
103	A little more group theory	336
104	Fourier analysis on finite Abelian groups	345
105	A formula of Euler	347
107	Primes in some arithmetical progressions	349
108	Extension from real to complex variable	351
109	Primes in general arithmetical progressions	358
App	endixes A, B, G	366
References		378
Index		381

CA-CAREES SCH LIFERED DE SON DE MAN AMBRESIONE, SER MENDENDE DEL MAN SON

This less our st quart - gainer as work.