CONTENTS

1.	Introduction	1
2.	Theoretical foundations of the stability of mine openings	3
2.1	Formulation of a general solution	3
2.2	State of stress in a point of a body	7
2.3	State of strain in a point of a body	12
2.4	Fundamental equation systems of the theory of continuum mechanics	17
	2.4.1 Infinitesimal equilibrium equations	17
	2.4.2 Equations of the strain continuity (equations of compatibility)	19
	2.4.3 Boundary conditions	20
2.5	Solution methods of the stress and strain state in rock mechanics .	21
	Conditions of plasticity and phenomenological theories of failure .	23
	2.6.1 Description of the most important conditions of plasticity and	
	failure	- 26
2.7	Fundamental relations in rheology and rheological modelling	30
	2.7.1 Rheological theories of the limiting state	41
2.8	Stress state in the neighbourhood of mine openings	43
	2.8.1 Primary stress state in the rock mass	43
	2.8.2 Stress state around unsupported openings	44
3.	Classification of methods for computing the stability of mine openings	58
3.1	Review of methods for solving problems of load acting on supports	58
	Factors affecting the choice of computing methods for the load acting	
	on supports and criteria for their selection	65
	3.2.1 Objective factors	67
	3.2.2 Subjective factors	79
3.3	Selection of classification criteria	83
3.4	Classification criteria of computing methods	85
	3.4.1 Condition (state) of the mining opening	85
	3.4.2 Deformational and strength manifestations in rocks	91
3.5	Connection between the classification of computing methods and	
	problems of critical depth of a mine working	95
	3.5.1 Formulation of the approach to the problem of critical depth	96
4.	Classification of computing methods	106
4.1	Arch (dome) theories I	106
4.2	Deformational (strain) methods II	110
	Statical methods of total stability III (method of stabilizing stresses)	128

4.4	Engineering methods IV	131
	4.4.1 Empirical methods	131
	4.4.2 Empirico-analytical methods	132
	4.4.3 Probabilistic methods	136
4.5	Concluding notes to the classification of computing methods	139
5.	Statical solutions of supporting structures	145
5.1	Review of the state of statical solution of supporting structures	145
5.2	Statical methods of solution of statically indeterminate supporting	
	structures	151
	5.2.1 Two-hinged arch	151
	5.2.2 Arch fixed on both ends	153
	5.2.3 Closed ring	154
	5.2.4 Two-hinged arch with passive resistance considered	156
53	Statical solution of supporting structures by the deformational	150
0.0	(strain) method	168
	5.3.1 Description of the computer program REVYZ 2	179
	5.3.2 Example of application of the program REVYZ 2	185
54	Stress analysis of sprayed concrete (shotcrete) lining and roof/rock	103
5.4	bolting	187
6.	Dimensioning of supporting structures	199
	Peculiarities of the application of the limiting state method in	199
0.1	calculations of supports	199
62	Calculation of supports by the limiting state method	202
0.2	6.2.1 Timber supports	202
		205
	6.2.2 Steel support	
7	6.2.3 Concrete and reinforced-concrete supports	206
7.	Supporting structures of longitudinal mine openings	221
	Fundamental types of supporting structures	221
	Timber supports	222
7.3	Steel support	226
	7.3.1 Open shapes of steel supports	239
	7.3.2 Closed shapes of steel supports	244
	7.3.3 Steel and cast-steel plate supports (linings)	246
7.4	Concrete and reinforced concrete lining	248
	7.4.1 Concrete and concrete-block lining	248
	7.4.2 Reinforced-concrete and steel-reinforced concrete lining	254
7.5	Roof and rock bolting	266
	7.5.1 Mechanically clamped rock bolts	267
	7.5.2 Bonded reinforcing bolts and bars	271
	7.5.3 Application of rock/roof bolting	279
	7.5.4 Clamping forces of bolts and their bearing capacity	281
7.6	Combined and special supports	289

/./ Grouting as a reinforcing element	295
8. Technology of the installation (placing) of supporting structures	303
8.1 Introduction	303
8.2 Technology of the installation of frame supports	305
8.3 Technology of the installation of planar supports (linings)	314
8.3.1 Monolithic supports (linings)	314
8.3.2 Pre-fabricated supports (linings)	338
8.4 Technology of roof/rock bolting	344
8.5 Technology of injection grouting	350
8.6 Conclusions to Chapter 8	353
9. General conclusions	354
Appendix 1	356
Appendix 2	363
References	366
Index	377