Contents

.

Preface	vii
Part 1. Shape derivative of minimum potential energy: abstract theory and applications	
Masato Kimura	1
Preface	5
Chapter 1. Shape derivative of minimum potential energy: abstract theory and applications	7
2. Multilinear map and Fréchet derivative	10
3. Minimization problems	12
4. Banach contraction mapping theorem	15
5. Implicit function theorem	17
6. Parameter variation formulas	19
7. Lipschitz deformation of domains	23
8. Potential energy in deformed domains	28
9. Applications	30
Bibliography	37
Part 2. Geometry of hypersurfaces and moving hypersurfaces in \mathbb{R}^m for the study of moving boundary problems MASATO KIMURA	39
D. (40
Pretace	43
Chapter 1. Preliminaries	45
1. Notation	45
2. Plane curves	46
3. Parametric representation	47
4. Graph representation and principal curvatures	50
Chapter 2. Differential calculus on hypersurfaces	53
1. Differential operators on Γ	53
2. Weingarten map and principal curvatures	54
Chapter 3. Signed distance function	59

ററ	N	T^{1}	EN	TT	C
-	τ	1.1	u i i		J .

 Signed distance function in general Signed distance function for hypersurface 	59 60
2. Signed absolute rate of a spectral acc	00
Chapter 4. Curvilinear coordinates	65
1. Differential and integral formulas in $\mathcal{N}^{\circ}(\Gamma)$	65
Chapter 5. Moving hypersurfaces	69
1. Normal time derivatives	69
2. Signed distance function for moving hypersurface	72
3. Time derivatives of geometric quantities	73
Chapter 6. Variational formulas	75
1. Transport identities	75
2. Transport identities for curvatures	78
Chapter 7. Gradient structure and moving boundary problems	81
1. General gradient flow of hypersurfaces	81
2. Prescribed normal velocity motion	82
3. Mean curvature flow	82
4. Anisotropic mean curvature flow	83
5. Gaussian curvature flow	83
6. Willmore flow	84
7. Volume preserving mean curvature flow	84
8. Surface diffusion flow	85
9. Hele–Shaw moving boundary problem	86
Bibliography	89
Appendix A.	91
1. Adjugate matrix	91
2. Jacobi's formula	92
Part 3. Large time behaviour for diffusive Hamilton-Jac	obi
equations During I AURENCOT	05
I HILIFFE LAUKENÇUI	30
Chapter 1. Introduction	99
Chapter 2. Well-posedness and smoothing effects	103
1. Gradient estimates	105
2. Time derivative estimates	108
3. Hessian estimates	111
4. Existence	114
5. Uniqueness	116
Bibliographical notes	117
Chapter 3. Extinction in finite time	119
1. An integral condition for extinction	121
2. A pointwise condition for extinction	123
3. Non-extinction	124

x

CONTENTS	xi
4. A lower bound near the extinction time Bibliographical notes	126 127
Chapter 4. Temporal decay estimates for integrable initial data: $\sigma = 1$ 1. Decay rates 2. Limit values of $ u _1$ 3. Improved decay rates: $q \in (1, q_*)$ Bibliographical notes	129 131 134 137 139
Chapter 5. Temporal growth estimates for integrable initial data: $\sigma = -1$ 1. Limit values of $ u _1$ and $ u _{\infty}$ 2. Growth rates Bibliographical notes	$141 \\ 142 \\ 149 \\ 150$
Chapter 6. Convergence to self-similarity 1. The diffusion-dominated case: $\sigma = 1$ 2. The reaction-dominated case: $\sigma = -1$ Bibliographical notes	151 151 154 158
Bibliography	159
 Appendix A. Self-similar large time behaviour 1. Convergence to self-similarity for the heat equation 2. Convergence to self-similarity for Hamilton-Jacobi equations 	$163 \\ 163 \\ 164$
Part 4. An area-preserving crystalline curvature flow equation Shigetoshi Yazaki	169
Preface	173
Chapter 1. An area-preserving crystalline curvature flow equation: introduction to mathematical aspects, numerical computations	3,
 Introduction Plane curve Moving plane curve Curvature flow equations Anisotropy The Frank diagram and the Wulff shape Crystalline energy Crystalline curvature flow equations An area-preserving motion by crystalline curvature Scenario of the proof of Theorem 1.50 Numerical scheme Towards modeling the formation of negative ice crystals or vapor figures produced by freezing of internal melt figures 	175 175 178 179 181 183 187 189 195 196 198
Bibliography	207
Index	211

CONTENTS

Appendix A.		213
1.	Strange examples	213
2.	A non-concave curve	213
3.	Anisotropic inequality—proof of Lemma 1.53—	213

.

•

 $\mathbf{x}\mathbf{i}\mathbf{i}$