Contents

Preface to the Third Edition, xxxi
About the Companion Website, xxxiii

PART | ANALYZING DNA, RNA, AND PROTEIN SEQUENCES

1 Introduction, 3

Organization of the Book, 4

Bioinformatics: The Big Picture, 5

A Consistent Example: Globins, 6

Organization of the Chapters, 8

Suggestions For Students and Teachers: Web Exercises, Find-a-Gene, and

Characterize-a-Genome, 9

Bioinformatics Software: Two Cultures, 10

Web-Based Software, 11

Command-Line Software, 11

Bridging the Two Cultures, 12

New Paradigms for Learning Programming for Bioinformatics, 13

Reproducible Research in Bioinformatics, 14

Bioinformatics and Other Informatics Disciplines, 15

Advice for Students, 15

Suggested Reading, 15

References, 16

2 Access to Sequence Data and Related Information, 19

Introduction to Biological Databases, 19

Centralized Databases Store DNA Sequences, 20

Contents of DNA, RNA, and Protein Databases, 24

Organisms in GenBank/EMBL-Bank/DDBJ, 24

Types of Data in GenBank/EMBL-Bank/DDBJ, 26

Genomic DNA Databases, 27

DNA-Level Data: Sequence-Tagged Sites (STSs), 27

DNA-Level Data: Genome Survey Sequences (GSSs), 27

DNA-Level Data: High-Throughput Genomic Sequence (HTGS), 27

RNA data, 27

RNA-Level Data: cDNA Databases Corresponding to Expressed Genes, 27

RNA-Level Data: Expressed Sequence Tags (ESTs), 28

RNA-Level Data: UniGene, 28

Access to Information: Protein Databases, 29

UniProt, 31

Central Bioinformatics Resources: NCBI and EBI, 31

Introduction to NCBI, 31

The European Bioinformatics Institute (EBI), 32

Ensembl, 34

Access to Information: Accession Numbers to Label and Identify

Sequences, 34

The Reference Sequence (RefSeq) Project, 36

RefSeqGene and the Locus Reference Genomic Project, 37

The Consensus Coding Sequence CCDS Project, 37

The Vertebrate Genome Annotation (VEGA) Project, 37

Access to Information via Gene Resource at NCBI, 38

Relationship Between NCBI Gene, Nucleotide, and Protein Resources, 41

Comparison of NCBI's Gene and UniGene, 41

NCBI's Gene and HomoloGene, 42

Command-Line Access to Data at NCBI, 42

Using Command-Line Software, 42

Accessing NCBI Databases with EDirect, 45

EDirect Example 1, 46

EDirect Example 2, 46

EDirect Example 3, 46

EDirect Example 4, 47

EDirect Example 5, 48

EDirect Example 6, 48

EDirect Example 7, 48

Access to Information: Genome Browsers, 49

Genome Builds, 49

The University of California, Santa Cruz (UCSC) Genome Browser, 50

The Ensembl Genome Browser, 50

The Map Viewer at NCBI, 52

Examples of How to Access Sequence Data: Individual Genes/Proteins, 52

Histones, 52

HIV-1 pol, 53

How to Access Sets of Data: Large-Scale Queries of Regions and Features, 54

Thinking About One Gene (or Element) Versus Many Genes (Elements), 54

The BioMart Project, 54

Using the UCSC Table Browser, 54

Custom Tracks: Versatility of the BED File, 56

Galaxy: Reproducible, Web-Based, High-Throughput Research, 57

Access to Biomedical Literature, 58

Example of PubMed Search, 59

Perspective, 59

Pitfalls, 60

Advice for Students, 60

Web Resources, 60
Discussion Questions, 61
Problems/Computer Lab, 61
Self-Test Quiz, 63
Suggested Reading, 64
References, 64

3 Pairwise Sequence Alignment, 69

Introduction, 69

Protein Alignment: Often More Informative than DNA Alignment, 70 Definitions: Homology, Similarity, Identity, 70 Gaps, 78

Pairwise Alignment, Homology, and Evolution of Life, 78

Scoring Matrices, 79

Dayhoff Model Step 1 (of 7): Accepted Point Mutations, 79

Dayhoff Model Step 2 (of 7): Frequency of Amino Acids, 79

Dayhoff Model Step 3 (of 7): Relative Mutability of Amino Acids, 80

Dayhoff Model Step 4 (of 7): Mutation Probability Matrix for the Evolutionary Distance of 1 PAM, 82

Dayhoff Model Step 5 (of 7): PAM250 and Other PAM Matrices, 84

Dayhoff Model Step 6 (of 7): From a Mutation Probability Matrix to a Relatedness Odds Matrix, 88

Dayhoff Model Step 7 (of 7): Log-Odds Scoring Matrix, 89

Practical Usefulness of PAM Matrices in Pairwise Alignment, 91

Important Alternative to PAM: BLOSUM Scoring Matrices, 91

Pairwise Alignment and Limits of Detection: The "Twilight Zone", 94

Alignment Algorithms: Global and Local, 96

Global Sequence Alignment: Algorithm of Needleman and Wunsch, 96

Step 1: Setting Up a Matrix, 96

Step 2: Scoring the Matrix, 97

Step 3: Identifying the Optimal Alignment, 99

Local Sequence Alignment: Smith and Waterman Algorithm, 101

Rapid, Heuristic Versions of Smith–Waterman: FASTA and BLAST, 103

Basic Local Alignment Search Tool (BLAST), 104

Pairwise Alignment with Dotplots, 104

The Statistical Significance of Pairwise Alignments, 106

Statistical Significance of Global Alignments, 106

Statistical Significance of Local Alignments, 108

Percent Identity and Relative Entropy, 108

Perspective, 110

Pitfalls, 112

Advice for Students, 112

Web Resources, 112

Discussion Questions, 113

Problems/Computer Lab, 113

Self-Test Quiz, 114 Suggested Reading, 115 References, 116

4 Basic Local Alignment Search Tool (BLAST), 121

Introduction, 121

BLAST Search Steps, 124

Step 1: Specifying Sequence of Interest, 124

Step 2: Selecting BLAST Program, 124

Step 3: Selecting a Database, 126

Step 4a: Selecting Optional Search Parameters, 127

Step 4b: Selecting Formatting Parameters, 132

Stand-Alone BLAST, 135

BLAST Algorithm Uses Local Alignment Search Strategy, 138

BLAST Algorithm Parts: List, Scan, Extend, 138

BLAST Algorithm: Local Alignment Search Statistics and E Value, 141

Making Sense of Raw Scores with Bit Scores, 143

BLAST Algorithm: Relation Between E and p Values, 143

BLAST Search Strategies, 145

General Concepts, 145

Principles of BLAST Searching, 146

How to Evaluate the Significance of Results, 146

How to Handle Too Many Results, 150

How to Handle Too Few Results, 150

BLAST Searching with Multidomain Protein: HIV-1 Pol, 151

Using Blast For Gene Discovery: Find-a-Gene, 155

Perspective, 159

Pitfalls, 160

Advice for Students, 160

Web Resources, 160

Discussion Questions, 160

Problems/Computer Lab, 160

Self-Test Quiz, 161

Suggested Reading, 162

References, 163

5 Advanced Database Searching , 167

Introduction, 167

Specialized BLAST Sites, 168

Organism-Specific BLAST Sites, 168

Ensembl BLAST, 168

Wellcome Trust Sanger Institute, 170

Specialized BLAST-Related Algorithms, 170

WU BLAST 2.0, 170

European Bioinformatics Institute (EBI), 170

Specialized NCBI BLAST Sites, 170

BLAST of Next-Generation Sequence Data, 170

Finding Distantly Related Proteins: Position-Specific Iterated BLAST

(PSI-BLAST) and DELTA-BLAST, 171

PSI-BLAST Errors: Problem of Corruption, 177

Reverse Position-Specific BLAST, 177

Domain Enhanced Lookup Time Accelerated BLAST (DELTA-BLAST), 177

Assessing Performance of PSI-BLAST and DELTA-BLAST, 179

Pattern-Hit Initiated BLAST (PHI-BLAST), 179

Profile Searches: Hidden Markov Models, 181

HMMER Software: Command-Line and Web-Based, 184

BLAST-Like Alignment Tools to Search Genomic DNA Rapidly, 186

Benchmarking to Assess Genomic Alignment Performance, 187

PatternHunter: Nonconsecutive Seeds Boost Sensitivity, 188

BLASTZ, 188

Enredo and Pecan, 191

MegaBLAST and Discontinuous MegaBLAST, 191

BLAST-Like Tool (BLAT), 192

LAGAN, 192

SSAHA2, 194

Aligning Next-Generation Sequence (NGS) Reads to a Reference Genome, 194

Alignment Based on Hash Tables, 194

Alignment Based on the Burrows-Wheeler Transform, 196

Perspective, 197

Pitfalls, 197

Advice For Students, 198

Web Resources, 198

Discussion Questions, 198

Problems/Computer Lab, 198

Self-Test Quiz, 199

Suggested Reading, 200

References, 201

6 Multiple Sequence Alignment, 205

Introduction, 205

Definition of Multiple Sequence Alignment, 206

Typical Uses and Practical Strategies of Multiple Sequence Alignment, 207

Benchmarking: Assessment of Multiple Sequence Alignment Algorithms, 207

Five Main Approaches to Multiple Sequence Alignment, 208

Exact Approaches to Multiple Sequence Alignment, 208

Progressive Sequence Alignment, 208

Iterative Approaches, 214

Consistency-Based approaches, 218

Structure-Based Methods, 220

Benchmarking Studies: Approaches, Findings, Challenges, 221

Databases of Multiple Sequence Alignments, 222

Pfam: Protein Family Database of Profile HMMs, 223

SMART, 224

Conserved Domain Database, 226

Integrated Multiple Sequence Alignment Resources: InterPro and iProClass, 226

Multiple Sequence Alignment Database Curation: Manual Versus Automated, 227

Multiple Sequence Alignments of Genomic Regions, 227

Analyzing Genomic DNA Alignments via UCSC, 229

Analyzing Genomic DNA Alignments via Galaxy, 229

Analyzing Genomic DNA Alignments via Ensembl, 231

Alignathon Competition to Assess Whole-Genome Alignment

Methods, 231

Perspective, 234

Pitfalls, 234

Advice for Students, 235

Discussion Questions, 235

Problems/Computer Lab, 235

Self-Test Quiz, 237

Suggested Reading, 238

References, 239

7 Molecular Phylogeny and Evolution, 245

Introduction to Molecular Evolution, 245

Principles of Molecular Phylogeny and Evolution, 246

Goals of Molecular Phylogeny, 246

Historical Background, 247

Molecular Clock Hypothesis, 250

Positive and Negative Selection, 254

Neutral Theory of Molecular Evolution, 258

Molecular Phylogeny: Properties of Trees, 259

Topologies and Branch Lengths of Trees, 259

Tree Roots, 262

Enumerating Trees and Selecting Search Strategies, 263

Type of Trees, 266

Species Trees versus Gene/Protein Trees, 266

DNA, RNA, or Protein-Based Trees, 268

Five Stages of Phylogenetic Analysis, 270

Stage 1: Sequence Acquisition, 270

Stage 2: Multiple Sequence Alignment, 271

Stage 3: Models of DNA and Amino Acid Substitution, 272

Stage 4: Tree-Building Methods, 281

Distance-Based, 282

Phylogenetic Inference: Maximum Parsimony, 287

Model-Based Phylogenetic Inference: Maximum Likelihood, 289

Tree Inference: Bayesian Methods, 290

Stage 5: Evaluating Trees, 293

Perspective, 295

Pitfalls, 295

Advice for Students, 296

Web Resources, 297

Discussion Questions, 297

Problems/Computer Lab, 297

Self-Test Quiz, 298

Suggested Reading, 298

References, 299

PART II GENOMEWIDE ANALYSIS OF DNA, RNA, AND PROTEIN

8 DNA: The Eukaryotic Chromosome, 307

Introduction, 308

Major Differences between Eukaryotes and Bacteria and Archaea, 308

General Features of Eukaryotic Genomes and Chromosomes, 310

C Value Paradox: Why Eukaryotic Genome Sizes Vary So Greatly, 312

Organization of Eukaryotic Genomes into Chromosomes, 310

Analysis of Chromosomes Using Genome Browsers, 314

Analysis of Chromosomes Using BioMart and biomaRt, 314

Example 1, 317

Example 2, 319

Example 3, 319

Example 4, 319

Example 5, 320

Analysis of Chromosomes by the ENCODE Project, 320

Critiques of ENCODE: the C Value Paradox Revisited and the Definition of Function, 322

Repetitive DNA Content of Eukaryotic Chromosomes, 323

Eukaryotic Genomes Include Noncoding and Repetitive DNA Sequences, 323

Interspersed Repeats (Transposon-Derived Repeats), 325

Processed Pseudogenes, 326

Simple Sequence Repeats, 331

Segmental Duplications, 331

Blocks of Tandemly Repeated Sequences, 333

Gene Content of Eukaryotic Chromosomes, 334

Definition of Gene, 334

Finding Genes in Eukaryotic Genomes, 336

Finding Genes in Eukaryotic Genomes: EGASP Competition, 339

Three Resources for Studying Protein-Coding Genes: RefSeq, UCSC Genes,

GENCODE, 340

Protein-Coding Genes in Eukaryotes: New Paradox, 342

Regulatory Regions of Eukaryotic Chromosomes, 342

Databases of Genomic Regulatory Factors, 342

Ultraconserved Elements, 345

Nonconserved Elements, 345

Comparison of Eukaryotic DNA, 346

Variation in Chromosomal DNA, 347

Dynamic Nature of Chromosomes: Whole-Genome Duplication, 347

Chromosomal Variation in Individual Genomes, 349

Structural Variation: Six Types, 351

Inversions, 351

Mechanisms of Creating Duplications, Deletions, and Inversions, 351

Models for Creating Gene Families, 353

Chromosomal Variation in Individual Genomes: SNPs, 354

Techniques to Measure Chromosomal Change, 355

Array Comparative Genomic Hybridization, 356

SNP Microarrays, 356

Next-Generation Sequencing, 359

Perspective, 359

Pitfalls, 359

Advice to Students, 360

Web Resources, 360

Discussion Questions, 361

Problems/Computer Lab, 361

Self-Test Quiz, 364

Suggested Reading, 365

References, 366

9 Analysis of Next-Generation Sequence Data, 377

Introduction, 378

DNA Sequencing Technologies, 377

Sanger Sequencing, 379

Next-Generation Sequencing, 379

Cyclic Reversible Termination: Illumina, 382

Pyrosequencing, 384

Sequencing by Ligation: Color Space with ABI SOLiD, 385

Ion Torrent: Genome Sequencing by Measuring pH, 387

Pacific Biosciences: Single-Molecule Sequencing with Long Read Lengths, 387

Complete Genomics: Self-Assembling DNA Nanoarrays, 387

Analysis of Next-Generation Sequencing of Genomic DNA, 387

Overview of Next-Generation Sequencing Data Analysis, 387

Topic 1: Experimental Design and Sample Preparation, 389

Topic 2: From Generating Sequence Data to FASTQ, 390

Finding and Viewing FASTQ files, 392

Quality Assessment of FASTQ data, 393

FASTG: A Richer Format than FASTQ, 394

Topic 3: Genome Assembly, 394

Competitions and Critical Evaluations of the Performance of Genome Assemblers, 396

The End of Assembly: Standards for Completion, 398

Topic 4: Sequence Alignment, 399

Alignment of Repetitive DNA, 400

Genome Analysis Toolkit (GATK) Workflow: Alignment with BWA, 401

Topic 5: The SAM/BAM Format and SAMtools, 402

Calculating Read Depth, 405

Finding and Viewing BAM/SAM files, 405

Compressed Alignments: CRAM File Format, 406

Topic 6: Variant Calling: Single-Nucleotide Variants and Indels, 408

Topic 7: Variant Calling: Structural Variants, 409

Topic 8: Summarizing Variation: The VCF Format and VCFtools, 410

Finding and Viewing VCF files, 413

Topic 9: Visualizing and Tabulating Next-Generation Sequence Data, 413

Topic 10: Interpreting the Biological Significance of Variants, 417

Topic 11: Storing Data in Repositories, 421

Specialized Applications of Next-Generation Sequencing, 421

Perspective, 422

Pitfalls, 423

Advice for Students, 423

Web Resources, 424

Discussion Questions, 424

Problems/Computer Lab, 424

Self-Test Quiz, 425

Suggested Reading, 425

References, 425

10 Bioinformatic Approaches to Ribonucleic Acid (RNA), 433

Introduction to RNA, 433

Noncoding RNA, 436

Noncoding RNAs in the Rfam Database, 436

Transfer RNA, 438

Ribosomal RNA, 441

Small Nuclear RNA, 445

Small Nucleolar RNA, 445

MicroRNA, 445

Short Interfering RNA, 447

Long Noncoding RNA (IncRNA), 447

Other Noncoding RNA, 448

Noncoding RNAs in the UCSC Genome and Table Browser, 448

Introduction to Messenger RNA, 450

mRNA: Subject of Gene Expression Studies, 450

Low- and High-Throughput Technologies to Study mRNAs, 452

Analysis of Gene Expression in cDNA Libraries, 455

Full-Length cDNA Projects, 459

BodyMap2 and GTEx: Measuring Gene Expression Across the Body, 459

Microarrays and RNA-Seq: Genome-Wide Measurement of

Gene Expression, 460

Stage 1: Experimental Design for Microarrays and RNA-seq, 461

Stage 2: RNA Preparation and Probe Preparation, 461

Stage 3: Data Acquisition, 464

Hybridization of Labeled Samples to DNA Microarrays, 464

Data acquisition for RNA-seq, 465

Stage 4: Data Analysis, 465

Stage 5: Biological Confirmation, 465

Microarray and RNA-seg Databases, 465

Further Analyses, 465

Interpretation of RNA Analyses, 466

The Relationship between DNA, mRNA, and Protein Levels, 466

The Pervasive Nature of Transcription, 467

eQTLs: Understanding the Genetic Basis of Variation in Gene Expression through Combined RNA-seq and DNA-seq, 468

Perspective, 469

Pitfalls, 470

Advice to Students, 470

Web Resources, 470

Discussion Questions, 471

Problems/Computer Lab, 471

Self-Test Quiz, 471

Suggested Reading, 472

References, 473

11 Gene Expression: Microarray and RNA-seq Data Analysis, 479

Introduction, 479

Microarray Analysis Method 1: GEO2R at NCBI, 482

GEO2R Executes a Series of R Scripts, 482

GEO2R Identifies the Chromosomal Origin of Regulated Transcripts, 485

GEO2R Normalizes Data, 486

GEO2R uses RMA Normalization for Accuracy and Precision, 488

Fold Change (Expression Ratios), 490

GEO2R Performs >22,000 Statistical Tests, 490

GEO2R Offers Corrections for Multiple Comparisons, 494

Microarray Analysis Method 2: Partek, 495

Importing Data, 496

Quality Control, 496

Adding Sample Information, 497

Sample Histogram, 498

Scatter Plots and MA Plots, 498

Working with Log₂ Transformed Microarray Data, 498 Exploratory Data Analysis with Principal Components Analysis (PCA), 498

Performing ANOVA in Partek, 501

From t-test to ANOVA, 503

Microarray Analysis Method 3: Analyzing a GEO Dataset with R, 504 Setting up the Analyses, 504

Reading CEL Files and Normalizing with RMA, 506

Identifying Differentially Expressed Genes (Limma), 508

Microarray Analysis and Reproducibility, 510

Microarray Data Analysis: Descriptive Statistics, 511

Hierarchical Cluster Analysis of Microarray Data, 511

Partitioning Methods for Clustering: k-Means Clustering, 516

Multidimensional Scaling Compared to Principal Components

Analysis, 517

Clustering Strategies: Self-Organizing Maps, 517

Classification of Genes or Samples, 517

RNA-Seq, 519

Setting up a TopHat and CuffLinks Sample Protocol, 523

TopHat to Map Reads to a Reference Genome, 524

Cufflinks to Assemble Transcripts, 525

Cuffdiff to Determine Differential Expression, 525

CummeRbund to Visualize RNA-seq Results, 526

RNA-seq Genome Annotation Assessment Project (RGASP), 527

Functional Annotation of Microarray Data, 528

Perspective, 529

Pitfalls, 530

Advice for Students, 531

Suggested Reading, 531

Problems/Computer Lab, 532

Self-Test Quiz, 532

Suggested Reading, 533

References, 534

12 Protein Analysis and Proteomics, 539

Introduction, 539

Protein Databases, 540

Community Standards for Proteomics Research, 542

Evaluating the State-of-the-Art: ABRF analytic

challenges, 542

Techniques for Identifying Proteins, 543

Direct Protein Sequencing, 543

Gel Electrophoresis, 543

Mass Spectrometry, 547

Four Perspectives on Proteins, 551

Perspective 1: Protein Domains and Motifs: Modular Nature of Proteins, 552

Added Complexity of Multidomain Proteins, 557

Protein Patterns: Motifs or Fingerprints Characteristic of Proteins, 557

Perspective 2: Physical Properties of Proteins, 559

Accuracy of Prediction Programs, 561

Proteomic Approaches to Phosphoryation, 563

Proteomic Approaches to Transmembrane Regions, 565

Introduction to Perspectives 3 and 4: Gene Ontology Consortium, 567

Perspective 3: Protein Localization, 568

Perspective 4: Protein Function, 570

Perspective, 575

Pitfalls, 575

Advice for Students, 575

Web Resources, 576

Discussion Questions, 578

Problems/Computer Lab, 578

Self-Test Quiz, 579

Suggested Reading, 580

References, 580

13 Protein Structure, 589

Overview of Protein Structure, 589

Protein Sequence and Structure, 590

Biological Questions Addressed by Structural Biology: Globins, 591

Principles of Protein Structure, 591

Primary Structure, 591

Secondary Structure, 594

Tertiary Protein Structure: Protein-Folding Problem, 598

Structural Genomics, the Protein Structure Initiative, and Target Selection, 600

Protein Data Bank, 602

Accessing PDB Entries at NCBI Website, 606

Integrated Views of Universe of Protein Folds, 609

Taxonomic System for Protein Structures: SCOP Database, 610

CATH Database, 613

Dali Domain Dictionary, 615

Comparison of Resources, 617

Protein Structure Prediction, 617

Homology Modeling (Comparative Modeling), 618

Fold Recognition (Threading), 619

Ab Initio Prediction (Template-Free Modeling), 621

A Competition to Assess Progress in Structure Prediction, 621

Intrinsically Disordered Proteins, 622

Protein Structure and Disease, 622

Perspective, 625

Pitfalls, 625
Advice for Students, 625
Discussion Questions, 625
Problems/Computer Lab, 626
Self-Test Quiz, 627

Suggested Reading, 628

References, 628

14 Functional Genomics, 635

Introduction to Functional Genomics, 635

The Relationship Between Genotype and Phenotype, 637

Eight-Model Organisms For Functional Genomics, 638

- 1. The Bacterium Escherichia coli, 639
- 2. The Yeast Saccharomyces cerevisiae, 640
- 3. The Plant Arabidopsis thaliana, 643
- 4. The Nematode Caenorhabditis elegans, 643
- 5. The Fruit Fly Drosophila melanogaster, 645
- 6. The Zebrafish Danio rerio, 645
- 7. The Mouse Mus musculus, 646
- 8. Homo sapiens: Variation in Humans, 647

Functional Genomics Using Reverse and Forward Genetics, 648

Reverse Genetics: Mouse Knockouts and the β -Globin Gene, 650

Reverse Genetics: Knocking Out Genes in Yeast Using Molecular

Barcodes, 653

Reverse Genetics: Random Insertional Mutagenesis (Gene Trapping), 657

Reverse Genetics: Insertional Mutagenesis in Yeast, 660

Reverse Genetics: Gene Silencing by Disrupting RNA, 662

Forward Genetics: Chemical Mutagenesis, 665

Comparison of Reverse and Forward Genetics, 665

Functional Genomics and the Central Dogma, 666

Approaches to Function and Definitions of Function, 646

Functional Genomics and DNA: Integrating Information, 668

Functional Genomics and RNA, 668

Functional Genomics and Protein, 670

Proteomics Approaches to Functional Genomics, 670

Functional Genomics and Protein: Critical Assessment of Protein Function

Annotation, 672

Protein-Protein Interactions, 672

Yeast Two-Hybrid System, 673

Protein Complexes: Affinity Chromatography and Mass

Spectrometry, 675

Protein-Protein Interaction Databases, 676

From Pairwise Interactions to Protein Networks, 678

Assessment of Accuracy, 680

Choice of Data, 680

Experimental Organism, 680 Variation in Pathways, 681 Categories of Maps, 681

Pathways, Networks, and Integration: Bioinformatics Resources, 682

Perspective, 685

Pitfalls, 686

Advice for Students, 686

Web Resources, 686

Discussion Questions, 686

Problems/Computer Lab, 686

Self-Test Quiz, 687

Suggested Reading, 688

References, 688

PART III GENOME ANALYSIS

15 Genomes Across the Tree of Life, 699

Introduction, 700

Five Perspectives on Genomics, 701

Brief History of Systematics, 701

History of Life on Earth, 705

Molecular Sequences as the Basis of the Tree of Life, 705

Role of Bioinformatics in Taxonomy, 709

Prominent Web Resources, 710

Ensembl Genomes, 710

NCBI Genome, 710

Genome Portal of DOE JGI and the Integrated Microbial Genomes, 710

Genomes On Line Database (GOLD), 710

UCSC, 710

Genome-Sequencing Projects: Chronology, 711

Brief Chronology, 711

1976–1978: First Bacteriophage and Viral Genomes, 711

1981: First Eukaryotic Organellar Genome, 712

1986: First Chloroplast Genomes, 714

1992: First Eukaryotic Chromosome, 715

1995: Complete Genome of Free-Living Organism, 715

1996: First Eukaryotic Genome, 715

1997: Escherichia coli, 715

1998: First Genome of Multicellular Organism, 716

1999: Human Chromosome, 716

2000: Fly, Plant, and Human Chromosome 21, 716

2001: Draft Sequences of Human Genome, 716

2002: Continuing Rise in Completed Genomes, 717

2003: HapMap, 717

2004: Chicken, Rat, and Finished Human Sequences, 717

2005: Chimpanzee, Dog, Phase I HapMap, 718

2006: Sea Urchin, Honeybee, dbGaP, 718

2007: Rhesus Macaque, First Individual Human Genome, ENCODE Pilot, 718

2008: Platypus, First Cancer Genome, First Personal Genome Using NGS, 718

2009: Bovine, First Human Methlyome Map, 718

2010: 1000 Genomes Pilot, Neandertal, Exome Sequencing to

Find Disease Genes, 719

2011: A Vision for the Future of Genomics, 719

2012: Denisovan Genome, Bonobo, and 1000 Genomes Project, 719

2013: The Simplest Animal and a 700,000-Year-Old Horse, 719

2014: Mouse ENCODE, Primates, Plants, and Ancient Hominids, 719

2015: Diversity in Africa, 720

Genome Analysis Projects: Introduction, 720

Large-Scale Genomics Projects, 721

Criteria for Selection of Genomes for Sequencing, 722

Genome Size, 722

Cost, 722

Relevance to Human Disease, 723

Relevance to Basic Biological Questions, 724

Relevance to Agriculture, 724

Sequencing of One Versus Many Individuals from a Species, 724

Role of Comparative Genomics, 724

Resequencing Projects, 725

Ancient DNA Projects, 725

Metagenomics Projects, 725

Genome Analysis Projects: Sequencing, 728

Genome-Sequencing Centers, 728

Trace Archive: Repository for Genome Sequence Data, 728

HTGS Archive: Repository for Unfinished Genome Sequence Data, 730

Genome Analysis Projects: Assembly, 730

Four Approaches to Genome Assembly, 730

Genome Assembly: From FASTQ to Contigs with Velvet, 733

Comparative Genome Assembly: Mapping Contigs to Known Genomes, 734

Finishing: When Has a Genome Been Fully Sequenced?, 735

Genome Assembly: Measures of Success, 735

Genome Assembly: Challenges, 735

Genome Analysis Projects: Annotation, 737

Annotation of Genes in Eukaryotes: Ensembl Pipeline, 738

Annotation of Genes in Eukaryotes: NCBI Pipeline, 739

Core Eukaryotic Genes Mapping Approach (CEGMA), 739

Assemblies from the Genome Reference Consortium, 741

Assembly Hubs and Transfers at UCSC, Ensembl, and NCBI, 741

Annotation of Genes in Bacteria and Archaea, 741

Genome Annotation Standards, 741

Perspective, 742

Pitfalls, 742
Advice for Students, 743
Discussion Questions, 743
Problems/Computer Lab, 743
Self-Test Quiz, 745
Suggested Reading, 743
References, 745

16 Completed Genomes: Viruses, 755

Introduction, 755

International Committee on Taxonomy of Viruses (ICTV) and Virus Species, 756

Classification of Viruses, 758

Classification of Viruses Based on Morphology, 758

Classification of Viruses Based on Nucleic Acid Composition, 758

Classification of Viruses Based on Genome Size, 758

Classification of Viruses Based on Disease Relevance, 760

Diversity and Evolution of Viruses, 762

Metagenomics and Virus Diversity, 764

Bioinformatics Approaches to Problems in Virology, 765

Human Immunodeficiency Virus (HIV), 766

NCBI and LANL resources for HIV-1, 766

Influenza Virus, 771

Measles Virus, 774

Ebola Virus, 775

Herpesvirus: From Phylogeny to Gene Expression, 776

The Pairwise Sequence Comparison (PASC) Tool, 780

Giant Viruses, 782

Comparing genomes with MUMmer, 783

Perspectives, 785

Pitfalls, 786

Advice for Students, 786

Web Resources, 786

Discussion Questions, 787

Problems/Computer Lab, 787

Self-Test Quiz, 788

Suggested Reading, 789

References, 789

17 Completed Genomes: Bacteria and Archaea, 797

Introduction, 797

Classification of Bacteria and Archaea, 798

Classification of Bacteria by Morphological Criteria, 800

Classification of Bacteria and Archaea Based on Genome Size and Geometry, 801

Classification of Bacteria and Archaea Based on Lifestyle, 805

Classification of Bacteria Based on Human Disease Relevance, 808

Classification of Bacteria and Archaea Based on Ribosomal RNA

Sequences, 809

Classification of Bacteria and Archaea Based on Other Molecular

Sequences, 810

The Human Microbiome, 811

Analysis of Bacterial and Archaeal Genomes, 814

Nucleotide Composition, 817

Finding Genes, 819

Interpolated Context Model (ICM), 822

GLIMMER3, 824

Challenges of Bacterial and Archaeal Gene Prediction, 825

Gene Annotation, 825

Lateral Gene Transfer, 827

Comparison of Bacterial Genomes, 830

TaxPlot, 830

MUMmer, 833

Perspective, 834

Pitfalls, 835

Advice for Students, 835

Web Resources, 835

Discussion Questions, 836

Problems/Computer Lab, 836

Self-Test Quiz, 836

Suggested Reading, 837

References, 837

18 Eukaryotic Genomes: Fungi, 847

Introduction, 847

Description and Classification of Fungi, 848

Introduction to Budding Yeast Saccharomyces Cerevisiae, 849

Sequencing Yeast Genome, 851

Features of Budding Yeast Genome, 851

Exploring Typical Yeast Chromosome, 854

Web Resources for Analyzing a Chromosome, 854

Exploring Variation in a Chromosome with Command-Line Tools, 857

Finding Genes in a Chromosome with Command-Line Tools, 858

Properties of Yeast Chromosome XII, 860

Gene Duplication and Genome Duplication of S. cerevisiae, 860

Comparative Analyses of Hemiascomycetes, 865

Comparative Analyses of Whole-Genome Duplication, 866

Identification of Functional Elements, 868

Analysis of Fungal Genomes, 869

Fungi in the Human Microbiome, 870

Aspergillus, 871

Candida albicans, 871

Cryptococcus neoformans: model fungal pathogen, 872

Atypical Fungus: Microsporidial Parasite Encephalitozoon cuniculi, 873

Neurospora crassa, 873

First Basidiomycete: Phanerochaete chrysosporium, 875

Fission Yeast Schizosaccharomyces pombe, 875

Other Fungal Genomes, 876

Ten Leading Fungal Plant Pathogens, 876

Perspective, 876

Pitfalls, 877

Advice for Students, 877

Web Resources, 877

Discussion Questions, 877

Problems/Computer Lab, 878

Self-Test Quiz, 879

Suggested Reading, 880

References, 880

19 Eukaryotic Genomes: From Parasites to Primates, 887

Introduction, 887

Protozoans at Base of Tree Lacking Mitochondria, 890

Trichomonas, 890

Giardia lamblia: A Human Intestinal Parasite, 891

Genomes of Unicellular Pathogens: Trypanosomes and Leishmania, 890

Trypanosomes, 892

Leishmania, 894

The Chromalveolates, 895

Malaria Parasite Plasmodium falciparum, 895

More Apicomplexans, 898

Astonishing Ciliophora: Paramecium and Tetrahymena, 899

Nucleomorphs, 902

Kingdom Stramenopila, 904

Plant Genomes, 906

Overview, 906

Green Algae (Chlorophyta), 908

Arabidopsis thaliana Genome, 910

The Second Plant Genome: Rice, 913

Third Plant: Poplar, 914

Fourth Plant: Grapevine, 915

Giant and Tiny Plant Genomes, 915

Hundreds More Land Plant Genomes, 915

Moss, 916

Slime and Fruiting Bodies at the Feet of Metazoans, 916

Social Slime Mold Dictyostelium discoideum, 916

Metazoans, 917

Introduction to Metazoans, 917

900 MYA: the Simple Animal Caenorhabditis elegans, 918

900 MYA: Drosophila melanogaster (First Insect Genome), 919

900 MYA: Anopheles gambiae (Second Insect Genome), 921

900 MYA: Silkworm and Butterflies, 922

900 MYA: Honeybee, 923

900 MYA: A Swarm of Insect Genomes, 923

840 MYA: A Sea Urchin on the Path to Chordates, 924

800 MYA: Ciona intestinalis and the Path to Vertebrates, 925

450 MYA: Vertebrate Genomes of Fish, 926

350 MYA: Frogs, 929

320 MYA: Reptiles (Birds, Snakes, Turtles, Crocodiles), 929

180 MYA: The Platypus and Opposum Genomes, 931

100 MYA: Mammalian Radiation from Dog to Cow, 933

80 MYA: The Mouse and Rat, 934

5-50 MYA: Primate Genomes, 937

Perspective, 940

Pitfalls, 941

Advice for Students, 941

Web Resources, 942

Discussion Questions, 942

Problems/Computer Lab, 942

Self-Test Quiz, 943

Suggested Reading, 944

References, 944

20 Human Genome, 957

Introduction, 957

Main Conclusions of Human Genome Project, 958

Gateways to Access the Human Genome, 959

NCBI, 959

Ensembl, 959

University of California at Santa Cruz Human Genome Browser, 961

NHGRI, 961

Wellcome Trust Sanger Institute, 964

Human Genome Project, 964

Background of Human Genome Project, 964

Strategic Issues: Hierarchical Shotgun Sequencing to Generate Draft

Sequence, 966

Human Genome Assemblies, 966

Broad Genomic Landscape, 968

Long-Range Variation in GC Content, 969

CpG Islands, 969

Comparison of Genetic and Physical Distance, 970

Repeat Content of Human Genome, 971

Transposon-Derived Repeats, 972

Simple Sequence Repeats, 973

Segmental Duplications, 973

Gene Content of Human Genome, 974

Noncoding RNAs, 975

Protein-Coding Genes, 975

Comparative Proteome Analysis, 975

Complexity of Human Proteome, 978

25 Human Chromosomes, 979

Group A (Chromosomes 1–3), 981

Group B (Chromosomes 4, 5), 982

Group C (Chromosomes 6–12, X), 983

Group D (Chromosomes 13–15), 983

Group E (Chromosomes 16–18), 984

Group F (Chromosomes 19, 20), 984

Group G (Chromosomes 21, 22, Y), 984

Mitochondrial Genome, 985

Human Genome Variation, 986

SNPs, Haplotypes, and HapMap, 986

Viewing and Analyzing SNPs and Haplotypes, 988

HaploView, 988

HapMap Browser, 988

Integrative Genomics Browser (IGV), 988

NCBI dbSNP, 988

PLINK, 992

SNPduo, 990

Major Conclusions of HapMap Project, 994

The 1000 Genomes Project, 995

Variation: Sequencing Individual Genomes, 998

Perspective, 999

Pitfalls, 1000

Advice for Students, 1001

Discussion Questions, 1001

Problems/Computer Lab, 1001

Self-Test Quiz, 1003

Suggested Reading, 1004

References, 1004

21 Human Disease, 1011

Human Genetic Disease: A Consequence of DNA Variation, 1011

A Bioinformatics Perspective on Human Disease, 1012

Garrod's View of Disease, 1014

Classification of Disease, 1015

NIH Disease Classification: MeSH Terms, 1017

Categories of Disease, 1020

Allele Frequencies and Effect Sizes, 1020

Monogenic Disorders, 1021

Complex Disorders, 1024

Genomic Disorders, 1025

Environmentally Caused Disease, 1029

Disease and Genetic Background, 1030

Mitochondrial Disease, 1030

Somatic Mosaic Disease, 1032

Cancer: A Somatic Mosaic Disease, 1033

Disease Databases, 1036

OMIM: Central Bioinformatics Resource for Human

Disease, 1036

Human Gene Mutation Database (HGMD), 1039

ClinVar and Databases of Clinically Relevant Variants, 1040

GeneCards, 1041

Integration of Disease Database Information at the UCSC Genome

Browser, 1041

Locus-Specific Mutation Databases and LOVD, 1041

The PhenCode Project, 1044

Limitations of Disease Databases: The Growing Interpretive

Gap, 1045

Human Disease Genes and Amino Acid Substitutions, 1045

Approaches to Identifying Disease-Associated Genes and Loci, 1046

Linkage Analysis, 1047

Genome-Wide Association Studies, 1047

Identification of Chromosomal Abnormalities, 1050

Human Genome Sequencing, 1051

Genome Sequencing to Identify Monogenic Disorders, 1051

Genome Sequencing to Solve Complex Disorders, 1051

Research Versus Clinical Sequencing and Incidental

Findings, 1052

Disease-causing Variants in Apparently Normal

Individuals, 1054

Human Disease Genes in Model Organisms, 1055

Human Disease Orthologs in Nonvertebrate

Species, 1056

Human Disease Orthologs in Rodents, 1058

Human Disease Orthologs in Primates, 1059

Functional Classification of Disease Genes, 1060

Perspective, 1063

Pitfalls, 1063

Advice for Students, 1063

Discussion Questions, 1064

Problems/Computer Lab, 1062

Self-Test Quiz, 1065 Suggested Reading, 1066 References, 1066

GLOSSARY, 1075

SELF-TEST QUIZ: SOLUTIONS, 1103

AUTHOR INDEX, 1105

SUBJECT INDEX, 1109