This text is a clearly written and complete introductory study of differential equations and their applications. Suitable for a one- or two-semester course on the subject, the material is fully comprehensible to anyone who has studied college-level calculus. This book distinguishes itself from other differential equation texts through its application of the subject matter to fascinating events and its incorporation of relatively recent developments in the field. Some applications include

- a proof that the painting, "Disciples at Emmaus," bought by the Rembrandt Society of Belgium was a modern forgery;
- a mathematical explanation of the Tacoma Bridge disaster;
- a model of the blood glucose regulatory system which leads to a criterion for the diagnosis of diabetes;
- an explanation of why the predator portion (sharks, skates, rays, etc.) of all fish caught in the port of Fiume, Italy, rose dramatically during the years of World War I;
- a mathematical verification of Darwin's law that "the more similar two species are, the fiercer is the struggle for existence between them."

An introduction to bifurcation theory, computer programs in C, Pascal, and Fortran, and many original and challenging exercises contribute to the quality of this text.

Contents

Cha	pter 1	
Firs	st-order differential equations	1
1.1	Introduction	1
1.2	First-order linear differential equations	2
1.3	The Van Meegeren art forgeries	11
1.4	Separable equations	20
1.5	Population models	26
1.6	The spread of technological innovations	39
1.7	An atomic waste disposal problem	46
1.8	The dynamics of tumor growth, mixing problems, and	
	orthogonal trajectories	52
1.9	Exact equations, and why we cannot solve very many	
	differential equations	58
1.10	The existence-uniqueness theorem; Picard iteration	67
1.11	Finding roots of equations by iteration	81
	1.11.1 Newton's method	87
1.12	Difference equations, and how to compute the interest	
	due on your student loans	91
1.13	Numerical approximations; Euler's method	96
	1.13.1 Error analysis for Euler's method	100
1.14	The three term Taylor series method	107
1.15	An improved Euler method	109
1.16	The Runge-Kutta method	112
1.17	What to do in practice	116

1.17 What to do in practice

Contents

Cha	pter 2		
Sec	ond-order linear differential equations	12	27
2.1	Algebraic properties of solutions	1	27
2.2	Linear equations with constant coefficients	1	38
	2.2.1 Complex roots	1	41
	2.2.2 Equal roots; reduction of order	1	45
2.3	The nonhomogeneous equation	1	51
2.4	The method of variation of parameters	1	53
2.5	The method of judicious guessing	1	57
2.6	Mechanical vibrations	× 1	65
	2.6.1 The Tacoma Bridge disaster	1	73
	2.6.2 Electrical networks	1	75
2.7	A model for the detection of diabetes	1	78
2.8	Series solutions	1	85
	2.8.1 Singular points, Euler equations	1	98
	2.8.2 Regular singular points, the method of Frobenius	2	.03
	2.8.3 Equal roots, and roots differing by an integer	2	.19
2.9	The method of Laplace transforms	2	25
2.10	Some useful properties of Laplace transforms	2	.33
2.11	Differential equations with discontinuous right-hand sides	2	.38
2.12	The Dirac delta function	2	43
2.13	The mothod of alimination for systems	2	51
2.14	Licher order equations	2	57
2.15	righer-order equations	2	.59
Cha	pter 3		
Sys	tems of differential equations	20	54
3.1	Algebraic properties of solutions of linear systems	2	64
3.2	Vector spaces	2	.73
3.3	Dimension of a vector space	2	.79
3.4	Applications of linear algebra to differential equations	2	.91
3.5	The theory of determinants	2	.97
3.0	Solutions of simultaneous linear equations	3	10
3.1	Linear transformations	3	20
3.8	The eigenvalue-eigenvector method of finding solutions	appendix 1 1 3	33
3.9	Complex roots	3	41
3.10	Equal roots	3	45
3.11	The nonhomogeneous equation: variation of parameters	3	55
3.12	Solving systems by Laplace transforms	3	60
5.15	Solving systems by Laplace transforms	rananana ua 3 Keriar sala	68
Cha	pter 4		
Qu	alitative theory of differential equations	37	72
4.1	Introduction	3	72
4.2	Stability of linear systems	3	78

4.3	Stability of equilibrium solutions	385
4.4	The phase-plane	394
4.5	Mathematical theories of war	398
	4.5.1 L. F. Richardson's theory of conflict	398
16	4.5.2 Lanchester's combat models and the battle of Iwo Jima	405
4.0	Qualitative properties of orbits	414
4.1	Long time behavior of colutions: the Doincaré Bandiyson Theorem	410
4.0	Long time behavior of solutions, the romeare-behavior theorem	420
4.9	Predator-prev problems: or why	437
4.10	the percentage of sharks caught in the Mediterranean	
	Sea rose dramatically during World War I	443
4.11	The principle of competitive exclusion in population biology	451
4.12	The Threshold Theorem of epidemiology	458
4.13	A model for the spread of gonorrhea	465
Cha	pter 5	
Ser	paration of variables and Fourier series	476
51	Two point boundary-value problems	476
5.2	Introduction to partial differential equations	481
5.3	The heat equation: separation of variables	483
5.4	Fourier series	487
5.5	Even and odd functions	493
5.6	Return to the heat equation	498
5.7	The wave equation	503
5.8	Laplace's equation	508
Cha	nter 6	
Cha	m Liouville houndary value problems	514
Stu	rm-Liouvine boundary value problems	514
6.1	Introduction	514
6.2	Inner product spaces	515
6.3	Orthogonal bases, Hermitian operators	526
0.4	Sturm-Liouville theory	533
App	oendix A	
Sor	ne simple facts concerning functions	
of s	several variables	545
Apr	endix B	
Sec	uences and series	547
App	pendix C	1
CI	Programs	549

Contents

Answers to odd-numbered exercises

A his south of a construct and the product of a standard.

557

Index

575