FRACTAL CONCEPTS IN SURFACE GROWTH

Albert-László Barabási and H. Eugene Stanley

he use of fractal concepts in understanding various growth phenomena, such as molecular beam epitaxy (MBE) or fluid flow in porous media, is increasingly important these days. This book introduces the basic models and concepts that are necessary to understand in a pedagogical way the various growth processes leading to rough interfaces. The text will be accessible to readers not familiar with the field.

Nature provides a large number of rough surfaces and interfaces. Similarly, rough surfaces are regularly observed in the laboratory during various technologically important growth technologies, such as MBE. In an attempt to understand the origin of the roughening phenomena, several computer models and theoretical approaches have recently been developed. The principal goal of this book is to describe the basic models and theories as well as the principles one uses to develop a model for a particular growth process. Furthermore, having described a particular growth model, the authors show how one can address and answer questions such as whether the surface will be rough, how rough it will be, and how to characterize this roughness. Having introduced the basic methods and tools needed to study a growth model, the authors discuss in detail two classes of phenomena: fluid flow in a porous medium and molecular beam epitaxy. In both cases, in addition to the models and analytical approaches, the authors describe the relevant experimental results as well.

This text contains homework problems at the ends of chapters, and will be invaluable for advanced undergraduates, graduate students and researchers in physics, materials science, chemistry and engineering, and especially those interested in condensed matter physics and surface growth.

Contents

1

			5.1		
		it is being the second second second second			
	Pref	ace globaley associal			XV
	Nota	tion guide			xix
PA	RT 1	Introduction			1
1	Inter	faces in nature			1
	1.1	Interface motion in disorder	ed media		3
	1.2	Deposition processes			6
	1.3	Biological systems		1	13
	1.4	Methods of analysis			16
	1.5	Discussion			18
	13.3	Discussion shire drive of the			
2	Scali	ing concepts			19
	2.1	Ballistic deposition	Biko		19
	2.2	Roughening			20
	2.3	Dynamic scaling	0233		23
	2.4	Correlations			25
	2.5	Discussion			27
3	Frac	tal concepts			29
	3.1	Self-similarity			29
	3.2	Fractal dimension			30
	3.3	Self-affinity	•		32
	3.4	Discussion			36
1. 1. 2.		Depinning transition			
PA	ART 2	Nonequilibrium roughening			38
	-	Southe arguments and a			
4	Ran	dom deposition			38
	4.1	Definition			38

	4.2	Exact solution	40	
	4.3	Stochastic growth equations	41	
	4.4	Discussion	42	
3	Line	ar theory	44	
	5.1	Random deposition with surface relaxation	44	
	5.2	Symmetry principles	40	
	5.5	The Edwards–Wilkinson equation	48	
	5.4	Solving the EW equation	51	
	5.5	Discussion	54	
6	Kardar–Parisi–Zhang equation			
	6.1	Construction of the KPZ equation	56	
	6.2	Excess velocity	58	
	6.3	Scaling arguments	60	
	6.4	Exponents	61	
7	6.5	Discussion	63	
7	Ren	ormalization group approach	65	
	71	Basic concents	65	
	72	Basic concepts Re-scaling in momentum space	69	
	73	Flow equations for the KPZ equation	71	
	74	Phase transition in the KPZ equation	73	
	75	Exponents for $d > 1$	74	
	7.6	Discussion	76	
		2 Scaling concepts		
8	Disc	crete growth models	78	
	8.1	Ballistic deposition	78	
	8.2	Eden model	79	
	8.3	Solid-on-solid models	81	
	8.4	Propagation of interfaces in the Ising model	87	
	8.5	Numerical integration of the KPZ equation	88	
	8.6	Discussion de la contraction de la contraction	90	
P	ART 3	Interfaces in random media	91	
0	Ras	ic phenomena	91	
,	91	Depinning transition	92	
	92	Interfaces in a disordered medium	93	
	03	Scaling arguments	95	
	04	Thermal noise	97	
	0.5	Discussion	97	
	1.1		70	

235 237

10	Que	nched noise	99
	10.1	Universality classes	100
	10.2	Pinning by directed percolation	103
	10.3	Isotropic growth models	109
	10.4	Discussion good good 201	113
11	Exp	eriments	115
	11.1	Fluid flow in a porous medium	115
	11.2	Paper wetting	119
	11.3	Propagation of burning fronts	122
	11.4	Growth of bacterial colonies	123
	11.5	Rupture lines in paper sheets	125
	11.6	Discussion	127
PA	rt 4	Molecular beam epitaxy	128
12	Basi	c phenomena of MBE	128
	12.1	Introduction	128
	12.2	Microscopic processes on crystal surfaces	130
	12.3	Discussion	136
13	Line	ar theory of MBE	139
	13.1	Surface diffusion	139
	13.2	Solving the diffusive growth equation	142
	13.3	Growth with desorption	142
261	13.4	Discussion	144
14	Non	linear theory for MBE	146
	14.1	Surface diffusion: Nonlinear effects	146
	14.2	Growth with desorption	150
	14.3	Discussion	152
15	Disc	rete models for MBE	153
1	15.1	Irreversible growth models	154
	15.2	Models with thermal activation	159
	15.3	Hamiltonian models	163
	15.4	Discussion	164
16	MB	E experiments	166
	16.1	Experimental techniques	167
	16.2	Scaling approach for interface roughening	169
	16.3	Dynamical properties	170

xi

1				1
10	n	01	ทา	C
00	14	EI	u	3
				-

	16.4	Discussion	172
17	Subm	nonolayer deposition	175
	17.1	Model	175
	17.2	Scaling theory	176
	17.3	Rate equations	180
	17.4	Results from simulations	181
	17.5	Extensions of the DDA model	183
	17.6	Experimental results	187
	17.7	Discussion	191
18	The	roughening transition	192
	18.1	Equilibrium fluctuations	192
	18.2	Discrete models and experimental tests	199
	18.3	Nonequilibrium effects	201
	18.4	Discussion	206
19	Nonl	ocal growth models	209
	19.1	Diffusion-limited aggregation	209
	19.2	Sputter deposition	212
	19.3	Experimental results on sputter deposition	219
	19.4	Roughening by ion bombardment	225
	19.5	Discussion	229
20	Diffu	ision bias	231
	20.1	Diffusion bias and instabilities	231
	20.2	Nonlinear theory	232
	20.3	Discrete models	235
	20.4	Experimental support	237
	20.5	Discussion	239
PAR	т 5	Noise	240
21	Diffu	usive versus deposition noise	240
	21.1	Conservative noise	240
	21.2	Linear theory	241
	21.3	Scaling regimes	242
	21.4	Nonlinear theory	243
	21.5	Discussion	244
	~	To be at the property realized. C.B.L.	245
22	Corr	elated noise	245

1

	22.2	Linear theory with correlated noise	246
	22.2	KPZ equation with spatially-correlated noise	240
	22.5	KPZ equation with temporally-correlated noise	240
	22.4	Discussion	250
	22.5	noiseiteite annuarait A.A	202
23	Rare	events of select guideness O . 2.A	253
	23.1	Linear theory	254
	23.2	Nonlinear theory	257
	23.3	Multi-affinity	259
	23.4	Discussion	261
Ра	rt 6	Advanced topics	262
24	Mult	ti-affine surfaces	262
	24.1	Hierarchy of scaling exponents	263
	24.2	A deterministic multi-affine model	264
	24.3	Brownian motion	266
	24.4	Local dimensions	266
25	Varia	ants of the KPZ equation	269
	25.1	Deterministic KPZ equation	269
	25.2	Anisotropic KPZ equation	271
	25.3	Universal amplitudes	275
	25.4	Discussion	276
26	Equi	librium fluctuations and directed polymers	277
	26.1	Discrete model	277
	26.2	Scaling properties	278
	26.3	Continuum description	279
	26.4	Equilibrium theory	280
	26.5	Discussion	284
РА	rt 7	Finale	285
27	Sum	mary of the continuum growth equations	285
	27.1	Universality classes	285
	27.2	Nomenclature	287
	27.3	Related problems	289
	27.4	Discussion	296
28	Out	ook	298

Contents

APPENI	DIX A Numerical recipes	301
A.1	Measuring exponents for self-affine interfaces	301
A.2	The coefficient λ of the nonlinear term	307
• A.3	Intrinsic width	309
A.4	Measuring surface diffusion currents	310
A.5	Generating noise in simulations	311
Appeni	DIX B Dynamic renormalization group	315
B.1	Introduction	315
B.2	Perturbation expansion	316
B.3	Renormalization procedure	323
B.4	Calculation of the integrals	325
Appeni	DIX C Hamiltonian description	330
Bibli	iography	332
Inde.	24.3 Browhian motion x	359