LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Edited by PROFESSOR N. J. HITCHIN

Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, United Kingdom

with the assistance of S. Donkin (*London*) I. Fesenko (*Nottingham*) J. Roe (*Pennsylvania*) E. Süli (*Oxford*)

The London Mathematical Society is incorporated under Royal Charter

A Quantum Groups Primer

Shahn Majid

This book provides a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes for a Part III pure mathematics course at Cambridge University, it is suitable for use as a textbook for graduate courses in quantum groups or as a supplement to modern courses in advanced algebra. The book assumes a background knowledge of basic algebra and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The book is aimed as a primer for mathematicians interested in quantum groups, algebraic groups, knot theory and noncommutative geometry, but will also be useful for mathematical physicists.

For a list of books available in this series see page i

Contents

Prefa	ce p	bage ix
1	Coalgebras, bialgebras and Hopf algebras. $U_q(b_+)$	1
2	Dual pairing. $SL_q(2)$. Actions	9
3	Coactions. Quantum plane \mathbb{A}_q^2	17
4	Automorphism quantum groups	23
5	Quasitriangular structures	29
6	Roots of unity. $u_q(sl_2)$	34
7	q-Binomials	39
8	Quantum double. Dual-quasitriangular structures	44
9	Braided categories	52
10	(Co)module categories. Crossed modules	58
11	q-Hecke algebras	64
12	Rigid objects. Dual representations. Quantum dimension	70
13	Knot invariants	77
14	Hopf algebras in braided categories. Coaddition on \mathbb{A}_q^2	84
15	Braided differentiation	91
16	Bosonisation. Inhomogeneous quantum groups	98
17	Double bosonisation. Diagrammatic construction of $u_q(sl_2)$) 105
18	The braided group $U_q(n_+)$. Construction of $U_q(\mathfrak{g})$	113
19	q-Serre relations	120
20	<i>R</i> -matrix methods	126
21	Group, algebra, Hopf algebra factorisations. Bicrossproduc	ets 132
22	Lie bialgebras. Lie splittings. Iwasawa decomposition	139
23	Poisson geometry. Noncommutative bundles. q-Sphere	146
24	Connections. q-Monopole. Nonuniversal differentials	153
Problems		159
Bibliography		166
Index		167