Contents

PI	eface		<i>page</i> xi
Ac	know	ledgements	XV
		abbreviations	xvii
1	Pre	1	
	1.1	What is a network?	1
	1.2	Basic concepts in graph theory	2
	1.3	Statistical characterization of networks	11
	1.4	Weighted networks	19
2	Net	24	
	2.1	Real-world systems	24
	2.2	Network classes	34
	2.3	The complicated and the complex	47
3	Net	50	
	3.1	Randomness and network models	50
	3.2	Exponential random graphs	58
	3.3	Evolving networks and the non-equilibrium approach	60
	3.4	Modeling higher order statistics and other attributes	72
	3.5	Modeling frameworks and model validation	74
4			
	4.1	A microscopic approach to dynamical phenomena	77
	4.2	Equilibrium and non-equilibrium systems	79
	4.3	Approximate solutions of the Master Equation	82
	4.4	Agent-based modeling and numerical simulations	85
5			92
	5.1	Phase transitions and the Ising model	92
	5.2	Equilibrium statistical physics of critical phenomena	96
	5.3	The Ising model in complex networks	101

Contracto	
Contents	

	5.4	Dynamics of ordering processes	108
	5.5	Phenomenological theory of phase transitions	111
6	Resil	ience and robustness of networks	116
	6.1	Damaging networks	116
	6.2	Percolation phenomena as critical phase transitions	120
	6.3	Percolation in complex networks	124
	6.4	Damage and resilience in networks	126
	6.5	Targeted attacks on large degree nodes	129
	6.6	Damage in real-world networks	135
7	Syncl	hronization phenomena in networks	136
	7.1	General framework	136
	7.2	Linearly coupled identical oscillators	138
	7.3	Non-linear coupling: firing and pulse	148
	7.4	Non-identical oscillators: the Kuramoto model	151
	7.5	Synchronization paths in complex networks	156
	7.6	Synchronization phenomena as a topology probing tool	158
8	Walk	ing and searching on networks	160
	8.1	Diffusion processes and random walks	160
	8.2	Diffusion in directed networks and ranking algorithms	166
	8.3	Searching strategies in complex networks	170
9	Epide	emic spreading in population networks	180
	9.1	Epidemic models	180
	9.2	Epidemics in heterogeneous networks	189
	9.3	The large time limit of epidemic outbreaks	197
	9.4	Immunization of heterogeneous networks	207
	9.5	Complex networks and epidemic forecast	212
10	Socia	l networks and collective behavior	216
	10.1	Social influence	216
	10.2	Rumor and information spreading	218
	10.3	Opinion formation and the Voter model	225
	10.4	The Axelrod model	232
	10.5	Prisoner's dilemma	235
	10.6	Coevolution of opinions and network	238
11	Traff	ic on complex networks	242
	11.1	Traffic and congestion	242
	11.2	Traffic and congestion in distributed routing	246
	11.3	Avalanches .	256
	11.4	Stylized models and real-world infrastructures	264
12	Netw	orks in biology: from the cell to ecosystems	267
	12.1	Cell biology and networks	268

		Contents	ix
	12.2	Flux-balance approaches and the metabolic activity	271
	12.3	Boolean networks and gene regulation	274
	12.4	The brain as a network	279
	12.5	Ecosystems and food webs	282
	12.6	Future directions	293
13	Postfa	ce: critically examining complex networks science	294
Ap	pendix I	Random graphs	298
Ap	pendix 2	2 Generating functions formalism	303
Ap	pendix 3	B Percolation in directed networks	306
Ap	pendix 4	4 Laplacian matrix of a graph	310
Ap	pendix S	5 Return probability and spectral density	311
Rej	ferences		313
Ina	lex		344