Contents

Li	st of Contributors	xvi
1	Role of computational sciences in Si nanotechnologies and devices <i>K. Shiraishi and T. Nakayama</i>	1
	1.1 Introduction	1
	1.2 Present Si technology trend stimulated by scientific knowledge1.3 Key knowledge for Si nanodevices obtained by computational	2
	science	3
	1.4 Future Si technology trend predicted by computational science	39
	1.5 Summary	43
	Acknowledgments	43
	References	43
2	Few-electron quantum-dot spintronics	47
-	D.V. Melnikov, J. Kim, LX. Zhang, and JP. Leburton	
	2.1 Introduction and motivations	47
	2.2 Two electrons in double quantum dots	50
	2.3 Two electrons in quantum wire quantum dots	72
	2.4 Few electrons in triple quantum dots	76
	2.5 Conclusion	81
	Acknowledgments	82
	References	85
3	Spintronics with metallic nanowires	90
	JPh. Ansermet	
	3.1 Introduction	90
	3.2 Spin diffusion	96
	3.3 Models for spin-polarized currents acting on magnetization	101
	3.4 Current-induced magnetization switching	108
	3.5 Current-driven magnetic excitations	114
	3.6 Resonant-current excitation	118
	3.7 Conclusion	123
	References	124
4	Molecular nanomagnets: Towards molecular spintronics W. Wernsdorfer	136
	4.1 Introduction	136
	4.2 Overview of molecular nanomagnets	139

	4.3 Giant spin model for nanomagnets	141
	4.4 Quantum dynamics of a dimer of nanomagnets	152
	4.5 Resonant photon absorption in Cr ₇ Ni antiferromagnetic	
	rings	155
	4.6 Photon-assisted tunnelling in single-molecule magnet	160
	4.7 Environmental decoherence effects in nanomagnets	161
	4.8 Molecular spintronics using single-molecule magnets	166
	4.9 Conclusion	173
	References	174
5	Si/SiGe heterostructures in nanoelectronics	181
	D.J. Paul	
	5.1 Introduction	181
	5.2 Growth of silicon-germanium alloys	181
	5.3 Strain	183
	5.4 Band structure	186
	5.5 Mainstream nanoelectronic applications	189
	5.6 Resonant tunnelling diodes	194
	5.7 SiGe quantum cascade emitters	197
	5.8 Conclusions	202
	References	202
6	Quantum dots: Self-organized and self-limiting assembly	205
	Dimitri D. Vvedensky	
	6.1 Introduction	205
	6.2 Methods of epitaxial growth	210
	6.3 Self-organization in Stranski–Krastanov systems	212
	6.4 Site control of quantum dots on patterned substrates	220
	6.5 Nanophotonics with quantum dots	227
	6.6 Arrays of quantum dots	234
	6.7 Summary and outlook	236
	References	238
7	Intersublevel quantum-dot infrared photodetectors	244
	E. Towe and D. Pal	
	7.1 Introduction	244
	7.2 Infrared photon absorption	247
	7.3 Some metrics for photon detectors	254
	7.4 Experimenal single-pixel quantum-dot infrared	
	photodetectors	260
	7.5 Device characteristics	270
	7.6 Toward quantum-dot focal plane array imagers	282
	7.7 Challenges and prospects for high-performance detectors	
	and arrays	288
	Acknowledgments	290
	References	290

8	Nanoionics and its device applications	294
	T. Hasegawa, K. Terabe, T. Sakamoto, and M. Aono	
	8.1 Introduction	294
	8.2 Materials	295
	8.3 Solid electrochemical reaction	296
	8.4 Fundamentals of an atomic switch	299
	8.5 New types of atomic switches	301
	8.6 Applications of atomic switches	306
	8.7 Summary and conclusion	309
	References	310
9	Molecular electronics based on self-assembled monolayers	312
	D. Vuillaume	
	9.1 Introduction	312
	9.2 Nanofabrication for molecular devices	313
	9.3 Molecular tunnelling barrier	319
	9.4 Molecular semiconducting wire	321
	9.5 Molecular rectifying diode	323
	9.6 Molecular switches and memories	326
	9.7 Molecular transistor	330
	9.8 Conclusion	331
	Acknowledgments	332
	References	332
10	Self-assembly strategy of nanomanufacturing of	ET 636
	hybrid devices	343
	S. Hong, YK. Kwon, J.S. Ha, NK. Lee, B. Kim,	
	ana Mi. Sung	3/3
	10.1 Introduction	343
	10.2 Direct patterning of nanostructures	357
	10.3 Directed assembly of nanostructures	360
	10.4 Characteristics of self-assembled hybrid handevices	380
	10.5 Conclusion	380
	Acknowledgments	300
	References	360
11	Templated carbon nanotubes and the use of their cavities	386
	for nanomaterial synthesis	500
	T. Kyotani and H. Orikasa	-
	11.1 Introduction	386
	11.2 Synthesis of carbon nanotubes and carbon	Nevi Per
	nano-test-tubes	387
	11.3 Controlled filling of magnetic materials into carbon	SINA
	nano-test-tubes	392
	11.4 Synthesis of water-dispersible and magnetically	1.715.2
	responsive carbon nano-test-tubes	397

	11.5 Carbon nanotube cavities as a reaction field of	
	hydrothermal synthesis	403
	11.6 Conclusions	412
	References	413
12	Nanocatalysis	416
	R.T. Vang, S. Wendt, and F. Besenbacher	
	12.1 Introduction	416
	12.2 Surface characterization	419
	12.3 Single-crystal surfaces	427
	12.4 Changing the reactivity at the atomic scale: Design of new	
	catalysts from first principles an investigation of the second	433
	12.5 Nanoparticles	437
	12.6 TEM studies of nanoclusters on high surface area	
	supports	458
	12.7 Conclusions and outlook	464
	References	465
13	Bifunctional nanomaterials for the imaging and treatment	
	of cancer	474
	A. Burke, D. Carroll, F.M. Torti, and S.V. Torti	
	13.1 Introduction	474
	13.2 Thermal ablative therapy in cancer	475
	13.3 Nanomaterial applications	481
	13.4 Gold nanoshells and nanorods	492
	13.5 Iron-oxide nanoparticles	496
	13.6 Conclusions and future directions	496
	Acknowledgments	497
	References	497
14	No. Direct patienting of honoremethers	503
14	D Maysinger P Kujawa and I Lowrić	303
	D. Maysinger, T. Kujawa, and J. Lovin	502
	14.1 Introduction	503
	14.2 Current problems with use of nanoparticles in medicine	513
	14.3 Nanoparticle-cell interactions	525
	14.4 Nanoparticles as imaging tools in animals and numans	520
	14.5 Conclusions	530
	Acknowledgments Deferences	531
	Kelefences	551
15	Nanostructured probes to enhance optical and vibrational	
	spectroscopic imaging for biomedical applications	539
	Anil K. Kodali and Rohit Bhargava	
	15.1 Introduction	539
	15.2 Background	542
	15.3 Theoretical modelling: NanoLAMPs	548
	15.4 Design	564

	15.5 Conclusion	566
	References	567
16	Protein-based nanodevices	570
10	P.P. Pompa and R. Rinaldi	
	16.1 Introduction	570
	16.2 Protein fundamentals	572
	16.3 Nanofabrication	574
	16.4 Nanoelectronic devices based on proteins	580
	16.5 Biophysical implications of protein-based	
	nanobioelectronics	588
	16.6 Nanodevices for biosensing	591
	16.7 Conclusions	605
	Acknowledgments	606
	References	606
17	Bioconjugated quantum dots for tumor molecular	
-	imaging and profiling	612
	P. Zrazhevskiy and X. Gao	
	17.1 Introduction	612
	17.2 Photophysical properties of quantum dots	615
	17.3 Engineering of OD-based probes for biomedical	
	applications	621
	17.4 Tumor molecular imaging and profiling	629
	17.5 Conclusions	636
	Acknowledgments	636
	References	637
18	Modulation design of plasmonics for diagnostic	
10	and drug screening	641
	CW. Lin, NF. Chiu, and CC. Chang	
	18.1 Introduction	641
	18.7 Theoretical insights	642
	18.3 Substrate effect (prism coupler, Ge-doped Si waveguide,	
	grating plasmonic)	649
	18.4 Metallic effect (LRSPR, CMO adhesive layer)	657
	18.5 Microfluidic parts	659
	18.6 Biomolecular laver effect	661
	18.7 Conclusions	669
	Acknowledgments	670
	References	670
19	Carbon-nanotube field emission electron and X-ray	
	technology for medical research and clinical applications	673
	Sigen Wang, Otto Zhou, and Sha Chang	
	19.1 Introduction	673
	19.2 Electron field emission from carbon nanotubes	674

	19.3 Carbon-nanotube field emission electron and X-ray	
	technologies in biomedical applications	677
	19.4 Summary and conclusion	694
	References	696
20	Theory of hydrogen storage in nanoscale materials <i>Yufeng Zhao, Yong-Hyun Kim, S.B. Zhang,</i> <i>and Michael J. Heben</i>	699
	20.1 Introduction	600
	20.2 Basic considerations	701
	20.3 Hydrogen-material interaction	705
	20.4 Internal interaction in HSMs	714
	20.5 Structures of hydrogen sorbents	722
	20.6 Required hydrogen-storage properties and design	
	principles (DP)	725
	20.7 Summary	731
	Acknowledgments	732
	Keleiences	132
21	Electron cold sources: Nanotechnology contribution to	
	field emitters	736
	Vu Thien Binh	
	21.1 Introduction	736
	21.2 Driving forces for the evolution of cold cathodes	737
	21.3 Single-atom emitters	739
	21.4 Use of single-atom nanotip: The Fresnel projection	
	microscope	742
	21.5 Use of single-atom nanotip: The	
	21.6 Material issues for field amittars: Cashar areas 1	746
	21.0 Watchai issues for field emitters: Carbon nanocompounds	748
	21.8 Carbon-nanopearl field emitters	749
	21.9 Applications and uses of carbon nanocompounds. CNTs and	701
	CNPs, as cold cathodes	765
	21.10Conclusions	769
	References	785
22	Free-standing grid-like nanostructures assembled into	
	3D open architectures for photovoltaic devices	789
	X.Y. Kong, Y.C. Wang, X.F. Fan, G.F. Guo, and L.M. Tong	
	22.1 Introduction	789
	22.2 Fabrication of photoelectrodes with 2D grid-like	
	nanostructures by the biotemplating approach	791
	22.5 Assembly and photophysics of grid-like nanostructures	-
	22.4 Performance of DSSCs working with dve-sensitized TiO ₂	794
	stacked-grid array photoelectrodes	799

	22.5 Characteristics and performance of DSSCs working with		
	TiO ₂ /NiO composite photoactive electrodes	802	
	22.6 Summary	805	
	Acknowledgments	806	
	References	806	
23	Nanolithography using molecular films and processing C.L. McGuiness, R.K. Smith, M.E. Anderson, P.S. Weiss, and D.L. Allara	808	
	23.1 Introduction	808	
	23.2 Self- and directed patterning	814	
	23.3 Patterning via external tools	818	
	23.4 Directed self-masking via selective deposition on		
	chemical patterns	831	
	23.5 Molecular rulers: A hybrid nanolithographic		
	patterning method	842	
	23.6 Conclusion	848	
	References	848	
24	Laser applications in nanotechnology	860	
	M.H. Hong		
	24.1 Introduction	860	
	24.2 Pulsed laser ablation for nanomaterials synthesis	860	
	24.3 Laser as a heat source for device nanoprocessing	865	
	24.4 Laser surface nanopatterning with near-field and		
	light-enhancement effects	868	
	24.5 Large-area parallel laser nanopatterning	879	
	24.6 Conclusions	884	
	References	885	
25	Evaluating the risks associated with nanomaterials	887	
	K. Thomas, N. Monteiro-Riviere, D. Warheit, and N. Savage		
	25.1 Introduction	887	
	25.2 Nanomaterials in consumer products	888	
	25.3 Characterization of nanomaterials	890	
	25.4 Hazard evaluation	891	
	25.5 Pulmonary exposure assessment	893	
	25.6 Dermal exposure assessment	894	
	25.7 Evaluating the risks associated with exposure to nanomaterials	806	
	25.8 Research priorities for the development of more refined	070	
	estimates of nanomaterial risk	899	
	25.9 Conclusion	902	
	References	903	
	erine Mattered Tawan Enversion No.1. Sec.4. Rocearch Earch T.		
bub	Ject Index	905	