Introduction

4

Limitation of Stress	1
4. 1 Verification at the Serviceability Limit States	1
4.1.1 Permissible Stresses	1
Example 4.1.1-1 Verification of the stresses in concrete and in steel	2
reinforcement	
4.2 Service Load Stress-Straight-Line Theory	3
4.2.1 Analysis for Stresses-Section cracked and elastic	3
Example 4.2.1 Compute the stresses in concrete and steel	4
reinforcement for a given bending moment	
Example 4.2-2 Compute the specified load stress in concrete	5
and steel	
Example 4.2-3 Compute the stress in concrete and steel	7
Example 4.2-4 Check the stresses of concrete and steel	8
for a given bending moment and axial load	
Example 4.2-5 Verify the stresses in concrete and in steel	9
reinforcement	
Example 4.2-6 Verify the stresses in concrete and in steel	11
reinforcement	
Example 4.2-7 Check the stresses in concrete and in	11
steel reinforcement	
Example 4.2-8 Check the stresses in concrete and reinforcement	13
caused by a bending moment M_{ϵ} and external	
normal tension load	
Example 4.2-9 Verify the stresses in concrete and in steel	14
Example 4.2-10 Verify the stresses in concrete and in steel,	16
the cross- section caused by a bending moment	
and normal compression force	
Example 4.2-11 check the stresses in concrete and in steel	17
reinforcement	
Example 4.2-12 Determine the entire area of steel reinforcement	19
Example 4.2-13 Compute the steel and concrete stresses	20

Example 4.2-14 Verify the stresses in concrete and in steel	22
of a T-beam	
Example 4.2-15 Verify the position of the neutral axis of a T-beam	24
Example 4.2-16 Design the flexural reinforcement for the I-beam	25
Example 4.2-17 Verify the stresses in concrete	26
and in steel of a T-beam	
Example 4.2-18 Verify the stresses in concrete	27
and in steel of a T-beam	
Example 4.2-19 Verify the stresses of concrete	29
and steel of a T-column	
Example 4.2-20 Verify the stresses in concrete	30
and in steel of a T-beam	
Example 4.2-21 Design the flexural reinforcement for the T beam	32
Example 4.2-22 Assessment of tension parts of PPRCB according	33
to limit state of crack width	
Example 4.2-23 Assessment the risk of longitudinal cracks due to	39
increased pressure stress concrete	
Example 4.2-24 Limitation of concrete stress due to	41
an increased creep	
5. Deformation Behaviour of Reinforced Concrete Beams	44
5.1 Deformation Behaviour of Reinforcement Concrete Beams	49
for I, T and rectangular sections	
5.1.1 Specimen and Material Details	50
5.1.2 Loading and Instrumentation Details	50
5.1.3 Methods	52
5.1.4 Discussion and Analysis of the Result	54
5.2 Determination of Strain Energy on Reinforced Concrete Beams	55
5.2.1 Methods	55
5.3 Crack Development and The Strain Energy in Reinforced Concrete Beams	58
5.3.1 Formation, Development and Width of Cracks	59

5.3.1 Formation, Development and Width of Cracks

59

5.3.2 Evaluation of Cracks

VYSOKÁ ŠKOLA VÝTVARNÝCH Umení v Bratislave Academy of Fine Arts And Design in Bratislava

ν š **ν** υ VEVD

	Example 5-1 Calculate the distance of the first an inclined	63
	shearing crack of reinforced concrete beam	
	Example 5-2 To assess the crack width perpendicular	65
	to the centreline of the reinforced concrete slab	
	Example 5-3 Assessment according to limit state the widths of	66
	perpendicular cracks	
	Example 5-4 The calculation of the stress in the reinforcement	69
	after full cracking	
	Example 5-5 Calculation of shear crack widths on a reinforced	71
	concrete beam according to CEB - FIP	
5 4 Methods		73
	Example 5.4-1 Calculation of deflections for rectangular	73
	reinforced concrete beam	
	Example 5.4-2 Detailed calculation of the coefficient χ	75
	for rectangular cross-section	
	Example 5.4-3 Evaluation of deflections due to shear forces and	75
	bending moments	
	Example 5.4-4 The calculation of the stress in the reinforcement	76
	after cracking and crack width determination	
	Example 5.4-5 Theorem of reciprocity of virtual work	84
	Example 5.4-6 The calculation of loads using trapezoidal rules	90
	Example 5.4-7 Calculation of ideal load	93
	Example 5.4-8 Calculation of the deflection by the ideal of loads	94

6. Behaviour and Conception of Timber Structures 95 Example 6-1 : Compute the stress in Rafter for a given bending 96 moment and external force at the section Example 6-2 : Compute the stress in Rafter for a given bending 96 moment and external force at the section 6.1 How Structural Systems Carry The Load - Timber Engineering 97 6.2 Structural Design 112 6.2.1 Proposal for a family house roof using steel elements 113 Example 6.2.1-1 Dimensioning reinforcement in piles 115

Example 6.2.1-2 Static scheme rafters as a simple beam	116
Example 6.2.1-3 Static scheme of rafter with overhangs from left	117
Example 6.2.1-4 Rafter with overhanging ends of the	117
right and of the left	
Example 6.2.1-5 Rafter as a continuous beam	118
Example 6.2.1-6 Buckling calculation	119
Example 6.2.1-7 Calculation of the thickness t and stress	119
Example 6.2.1-8 Design dimensions of the timber elements	119
Example 6.2.1-9 Design dimensions of the timber elements	120
6.3 Concentric compression members	121
Example: 6.3-1 Calculation of carrying capacity of the column	124
Example 6.3-2 Calculate the required width of the support	125
of beam on column	
Example 6.3-3 Top chord of truss beam be designed	125
dimensions of the elements	
Example 6.3-4 Assessment of wooden column	127
filed steel sheeting	128
7.1 Structural steel	128
7.1-1 Profiled steel sheeting	128
7.2 The permanent load	129

7.1 Structural steel	128
7.1-1 Profiled steel sheeting	128
7.2 The permanent load	129
7.3 Methods of analysis and design	130
7.3-1 Ultimate limit state	130
7.3-2 Bending failure and bending strength	131
7.3-3 Anchorage failure, anchorage fatigue resistance and	131
anchorage strength	
7.3-4 Shear failure	132
7.3-5 Design of the slab for point and line load	133
7.3-6 Reinforcement of the support	133
7.3-7 Typical structural details of composite slabs	134
7.3-8 Serviceability limit state for composite slabs	137
Example 7.1 Composite steel and concrete joists	142

7. Profiled

Department of Architecture STRUCTURAL ENGINEERING ROOM

VYSOKÁ ŠKOLA VÝTVARNÝCH UMENÍ V BRATISLAVE ACADEMY OF FINE ARTS AND DESIGN IN BRATISLAVA

Department of Architecture	STRUCTURAL ENGINEERING ROOM	
----------------------------	-----------------------------	--

Masonry	152
8.1 Unreinforced masonry walls subjected to vertical loading	152
8.1-1 Verification of unreinforced masonry walls	152
8.1-2 Characteristic compressive, flexural and shear	152
strength of masonry wall	
Example 8.1	157
Example 8.2	159
Example 8.3	160

9. Terminology	161
10. Realisation Projects	169