Table of contents

I.		Introduction: Global and personal perspectives1
	A.	Physics and engineering in systems biology
	B.	Personal perspective of scientific environment and teaching strategies for the
		next generation of physicists working in systems biology
	C.	Outlook
II.		First things first: Chlorophyll fluorescence emission of plants5
	A.	Chlorophyll fluorescence as a reporter on in vivo electron transport and
		regulation in plants 6
	B.	Chlorophyll fluorescence imaging of leaves: A brief introduction30
	C.	Chlorophyll fluorescence imaging of leaves: A review
III.		Novel instrumentation for non-imaging kinetic chlorophyll fluorometry67
	A.	Dual-modulation LED kinetic fluorometer
	B.	Flash fluorescence induction: A novel method to study regulation of
		photosystem II
	C.	Single-turnover flashes to saturate the Q _A reduction in a leaf were generated by
	de	the light-emitting diodes of a double modulation kinetic fluorometer
	D.	Measurements of phytoplankton of sub-nanomolar chlorophyll concentrations
	2.	by a modified double-modulation fluorometer
IV.		Imaging kinetic fluorometry of plants92
- ' '	A.	Kinetic imaging of chlorophyll fluorescence using modulated light93
	В.	A microscope for two-dimensional measurements of in vivo chlorophyll
		fluorescence kinetics using pulsed measuring light, continuous actinic light and
		saturating flashes. 104
v.		Applications of the novel fluorescence techniques in plant biology123
	Α.	Strategies of ultraviolet-B protection in microscopic algae
	B.	Microscopic algae and cyanobacteria in high-frequency intermittent light136
	C.	Characterization of Photosystem II activity and heterogeneity during the cell
		cycle of the green alga Scenedesmus quadricauda
	D.	Postharvest imaging of chlorophyll fluorescence from lemons can be used to
		predict fruit quality
	E.	On the relationship between the non-photochemical quenching of the
		chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A
		repetitive flash fluorescence induction study
VI.		Autonomous and forced oscillations of the regulatory networks179
	A.	New insights into photosynthetic oscillations revealed by two-dimensional
		microscopic measurements of chlorophyll fluorescence kinetics in intact leaves
		and isolated protoplasts
	B.	Complex metabolic oscillations in plants forced by harmonic irradiance189
	C.	Negative feedback regulation is responsible for the non-linear modulation of
		photosynthetic activity in plants and cyanobacteria exposed to a dynamic light
		environment
VII		Outlook