Contents

Preface	5
1 Pasia Tarms and Quantities of Hydromechanics	
1 Dasie Termis and Quantities of Hydromeenanies	
1.1 Basic State Variables of Fluid	
1.2 Physical Properties of Fluids	
1.3 Friction Forces in the Fluid Flow	
1.4 Surface Tension of Liquids	14
2 Hydrostatics	15
2.1 Hydrostatic Balance in the Gravitational Field	15
2.2 Hydrostatic Pressure	
2.3 Pressure Measurements	
2.4 Pascal's Law	
2.5 Hydrostatic Forces on Submerged Surfaces	
2.6 Liquid in Linearly Accelerated System	
2.7 Liquid in Rotating System	
2.8 Archimedes' Law, Buoyancy and Stability	
3 Flow of Ideal Fluid	
3 1 Basic Phenomena and Concepts of Fluid Flow	
3.2 Conservation of Mass – Continuity Equation	
3.3 Conservation of Momentum	
3.4 Basic Equations of an Ideal Fluid Flow	
3.5 Practical Applications of an Ideal Fluid Flow	
3.5.1 Discharge through a small outlet	
3.5.2 Discharge through a large opening	
3.5.3 Discharge through a submerged opening	
3.5.4 Venturi tube	40
3.5.5 Pitot and Prandtl tubes	
4 Flow Similarity Criteria	
4.1 Laminar Flow	
4.2 Turbulent Flow	
4.3 Theory of Similarity	
4.3.1 Geometric similarity	44
4.3.2 Kinematic similarity	44
4.3.3 Dynamic similarity	
4.3.4 Overall and partial similarity	
5 Fluid Flow Losses	
5.1 Basic Laws of Flow with Friction Losses	50
5.1.1 Conservation of mass: continuity equation	50
5.1.2 Conservation of momentum	50
5.1.3 Energy conservation	
5.2 Specific Energy Loss Due to Friction	
5.2.1 Straight pipe friction loss	
5.2.2 The Moody diagram	
5.2.3 Local losses	
5.2.4 Local loss coefficients	
5.2.5 Resulting specific energy loss	
5.2.0 Pressure loss, nead loss, power loss	

6 Flow with External Energy Supply	66
6.1 Basic Laws of Flow with External Energy Supply	66
6.1.1 Conservation of mass – continuity equation	66
6.1.2 Conservation of momentum.	66
6.2 Pump Specific Energy	68
6.3 Pump Characteristics	68
6.4 Pump Operation at Various Speeds	71
6.5 Integrating the Pump into Piping System	71
6.6 Piping Systems in Series and Parallel	75
6.7 Suction Head, Cavitation	75
7 Fluid Flow through Orifices, Mouthpieces, and Nozzles	78
7.1 Coefficients of Contraction, Velocity, and Discharge	78
7.2 Orifices Mouthpieces Nozzles	79
7.3 Orifice Plates, Nozzles, Venturi Tubes	81
8 Momentum and Forces in Fluid Flow	85
8.1 Control Surface and Control Volume	85
8.2 Linear Momentum Principle	85
8.3 Applications of the Momentum Principle	87
8.3.1 Jet engine thrust	87
8.3.2 Rocket engine thrust	88
8.3.3 Force of the jet acting upon a flat plate at rest	89
8.3.4 Force of the jet acting upon the curved vane at rest	89
8.3.5 Force of the jet acting upon the moving plate	89
8.3.6 Power of the water turbine wheel	90
8.3.7 Force of the fluid flow through a reducing bend	91
English-Czech glossary of basic terms used in hydromechanics	93
Literature	96