Contents

		pa pa	ige xvii xix
Chap	oter 1	Plants Create the Biosphere	1
Preface		2	
	1.1.1	Plants Are Abundant and They Support Other Life Forms	2
	1.1.2	Fundamentals and Overview	4
	1.1.3	The Number of Species and Their Classification	4
	1.1.4	Vegetation Types and Climate	5
1.2	The Fi	irst Land Plants	6
1.3	Energ	y Flow Organizes Molecules	9
1.4	Memb	ranes Are Necessary for Life	13
1.5	Eukar	yotic Cells Originated as Symbioses	14
1.6	The O	rigin of Photosynthesis	16
1.7	The O	xygen Revolution Was a Consequence of Photosynthesis	18
	1.7.1	Ocean Chemistry Changes With Oxygen	19
	1.7.2	Atmospheric Composition Changes With Oxygen	19
	1.7.3	The Ozone Layer Forms From Oxygen	20
1.8			20
1.9	Plants	Affect Climate	21
1.10	Sedim	ent and Ice Cores Provide a Record of Past Environments	25
1.11			27
			30
			30
	Furthe	er Reading	31
Chap	oter 2	The Search for Global Patterns	35
2.1	Introd	luction: There Are Two Ways to Classify Plants and Vegetation	36
2.2	Functi	ional Classifications Are Based on Ecological Traits	36
	2.2.1	Functional Classifications by von Humboldt, Raunkiaer and Küch	ler 37
	2.2.2	Climate Has a Major Impact on Plant Traits	43
	2.2.3	Climate and Life Form Are Summarized as Biomes	46
	2.2.4	Functional Classification Systems Have Limitations	47

2.3	Phylo	genetic Classifications Are Based on Evolutionary History	48
	2.3.1	Early Plant Classification by Linnaeus, Bentham and Hooker	48
	2.3.2	Plant Evolution: Wallace, Darwin and Bessey	49
	2.3.3	Molecular Techniques Provide New Insights	50
	2.3.4	The Two Largest Families of Plants: Asteraceae and Orchidaceae	52
	2.3.5	Grasses and Their Significance	55
	2.3.6	World Floristic Regions Are Based on Phylogeny and Geography	57
	2.3.7	Some Limitations of Phylogenetic Classifications for	
		Ecological Research	58
	Concl	usion	60
	Review	w Questions	62
	Furthe	er Reading	62
Chap	oter 3	Resources	65
3.1	Introd	luction: Plants Must Find Resources to Grow	66
	3.1.1	The CHNOPS Perspective	66
	3.1.2	The Costs of Acquisition	69
3.2	Carbo	n Dioxide: Foraging in an Atmospheric Reservoir	69
3.3		and Photosynthesis: Harvesting Photons	71
	3.3.1	Three Measures of Photon Harvest	71
	3.3.2	There are Different Photosynthetic Types	71
	3.3.3	An Exception to the Rule: Root Uptake of CO ₂	72
	3.3.4	Another View of Photosynthetic Types	73
	3.3.5	Architecture Affects Photon Harvesting	74
	3.3.6	The Overriding Importance of Height	76
3.4	Below	y-Ground Resources	77
	3.4.1	Water	77
	3.4.2	Nitrogen	78
	3.4.3	Phosphorus	79
	3.4.4	Experimental Tests for Nitrogen and Phosphorus Limitation	81
	3.4.5	Other Sources of Evidence for Nutrient Limitation	85
	3.4.6	Mineral Nutrients: A Single Cell Perspective	85
3.5	Resou	rces Affect Entire Ecosystems	87
	3.5.1	Primary Production is Controlled by Resources	87
	3.5.2	Soils Are Produced by Two Causal Factors	89
	3.5.3	Life After Death: Soils, Detritivores and Decomposers	92
	3.5.4	Soil Resources Have Altered Human History	96
	3.5.5	Two Historical Digressions: Jan Baptiste von Helmont	
		and Titus Smith	97
3.6	Resou	rces Vary in Space and Time	98
	3.6.1	There is Small-Scale Heterogeneity	98
	3.6.2	Resources Often Change Along Gradients	99
	3.6.3	Resources Often Occur in Transitory Patches	103

	3.6.4	Resource Fluctuations Complicate Short-Term Ecological	
		Studies	104
	3.6.5	Resources Provide a Habitat Template	107
3.7	Scarce	e Resources Have Many Consequences	109
	3.7.1	Evergreen Plants Conserve Scarce Resources	109
	3.7.2	Global Patterns in Leaf Architecture: The Leaf Economic Spectrum	111
	3.7.3	Bizarre Botany: Some Strange Evolution for Resource	
		Acquisition	112
	Conclu	asion	119
	Review	w Questions	120
	Furthe	er Reading	120
Cha	oter 4	Competition	123
4.1	Introd	luction: Plants Struggle Against One Another for Resources	124
4.2	There	Are Many Kinds of Competition	126
	4.2.1	Intraspecific Competition	126
	4.2.2	Distinguishing Between Intraspecific and Interspecific Competition	126
	4.2.3	Competition Intensity	129
	4.2.4	Competitive Effect and Competitive Response	130
	4.2.5	Competitive Dominance	130
4.3	Comp	etition Has Many Consequences	132
	4.3.1	Self-Thinning in Monocultures	132
	4.3.2	Dominance Patterns in Monocultures	134
	4.3.3	Density Dependence in Annual Plants	136
	4.3.4	The Relationship Between Intensity and Asymmetry of Competition	139
4.4	Comp	etitive Hierarchies Are Widespread	139
	4.4.1	Methods for Establishing Hierarchies	139
	4.4.2	The Consistency of Hierarchies Among Habitats	141
	4.4.3	Light and Shoot Size as Key Factors Producing Hierarchies	143
4.5	Comp	etition Gradients Are Widespread	146
	4.5.1	Measuring Competition Intensity Along Gradients	146
	4.5.2	Competition Intensity Gradients in an Old Field	147
	4.5.3	Competition and Cacti	149
	4.5.4	Competition Intensity Along a Soil Depth Gradient	149
	4.5.5	Competition Intensity Gradients in Wetlands	150
	4.5.6	Competition Along an Altitudinal Gradient	150
4.6	Foragi	ing Ability Might Be a Competitive Trait	152
4.7	Mycor	rrhizae Can Affect Competition	153
4.8	Two C	Competition Models	154
	4.8.1	The Problem of Coexistence	154
	4.8.2	Patch Dynamics: A Model	155
	4.8.3	Gradients and Zonation: A Model	157
4.9	The Ro	ole of Models in Ecology	159

	Conclu	asion	160
	Review	v Questions	160
	Furthe	r Reading	161
Chap	oter 5	Disturbance	163
5.1	Introd	uction: Disturbance Removes Biomass	164
5.2	Distur	bance Has Four Properties	165
	5.2.1	Duration	165
	5.2.2	Intensity	165
	5.2.3	Frequency	165
	5.2.4	Area	165
5.3	Examp	ples of Disturbance	166
	5.3.1	Fire Disturbs Many Kinds of Vegetation	166
	5.3.2	Erosion Creates Bare Ground	173
	5.3.3	Animals Create Gaps in Vegetation	175
	5.3.4	Sediment From Flooding Can Bury Wetlands	178
	5.3.5	Ice Reworks Shorelines	182
	5.3.6	Waves	183
	5.3.7	Storms	183
5.4	Catast	rophes Have Low Frequency and High Intensity	185
	5.4.1	Landslides	185
	5.4.2	Volcanic Eruptions	187
	5.4.3	Meteor Impacts	189
5.5	Measu	ring the Impacts of Disturbance With Experiments:	
	Two E	xamples	196
	5.5.1	Forested Watersheds at Hubbard Brook	196
	5.5.2	Marshes Along the Ottawa River	198
5.6	Distur	bance Creates Gap Dynamics	200
	5.6.1	Many Kinds of Trees Regenerate in Gaps	200
	5.6.2	Buried Seeds ("Seed Banks") Allow Regeneration After Disturbance	202
	5.6.3	Rivers Create Gaps by Depositing Sediment	204
5.7	Loggir	ng is a Disturbance Caused by Humans	205
5.8	Multip	le Factors in Plant Communities: Fire, Flooding	
	and D	rought in the Everglades	206
	Conclu	sion	208
	Review	Questions	209
	Furthe	r Reading	209
Chap	oter 6	Herbivory	211
6.1	Introd	uction: Herbivores Have Large Impacts Upon Plants	212
	6.1.1	Two Cautions Are Necessary	213
6.2	Observ	vations on Wildlife Diets: Four Examples	214

		6.2.1 Herbivores in African Grasslands	214
		6.2.2 Herbivorous Insects in Tropical Forest Canopies	215
		6.2.3 Giant Tortoises on Islands	215
		6.2.4 Herbivory in Anthropogenic Landscapes	217
	6.3	Plants Have Defences Against Herbivores	217
		6.3.1 Evolutionary Context	217
		6.3.2 Structures That Protect Seeds: The Strobilus	218
		6.3.3 Secondary Metabolites Also Defend Against Herbivores	222
		6.3.4 Some Cautions When Interpreting Anti-Herbivore Defences	227
		6.3.5 Food Quality Is Predicted by Nitrogen Content	229
	6.4	Field Experiments Expand Understanding of Herbivory	230
		6.4.1 Caterpillars Consume Deciduous Forest Canopies	231
		6.4.2 Land Crabs Can Change the Composition of Tropical Forest	233
		6.4.3 A Large Experiment on Grasslands in Tanzania	234
		6.4.4 Some Lessons for Exclosure Experiments	235
	6.5	Empirical Relationships Uncover General Patterns in Herbivory	237
	6.6	Some Theoretical Explorations	241
		6.6.1 Bottom–Up or Top–Down?	241
		6.6.2 Trophic Cascades	242
		6.6.3 Effects of Selective Herbivory on Plant Diversity	244
		6.6.4 A Simple Model of Herbivory	245
		6.6.5 When Herbivory Becomes Catastrophe	248
	6.7	Two Final Examples of Large-Scale Changes from Herbivores	252
		6.7.1 Mountain Pine Beetles Change Conifer Forests	252
		6.7.2 White-Tailed Deer Change Deciduous Forests	254
		Conclusion	255
		Review Questions	256
		Further Reading	256
)	Cha	oter 7 Positive Interactions	259
	7.1	Introduction: Plants Can Cooperate With Other Plants,	
		Fungi and Animals	260
		7.1.1 Definitions	260
		7.1.2 A Brief History of Positive Interactions	261
	7.2	Positive Interactions Occur Between Plants and Plants	262
		7.2.1 Nurse Plants	262
		7.2.2 Gradients Illustrate How Stress Affects Positive Interactions	265
		7.2.3 Examples of Positive Interactions in Wetlands	265
		7.2.4 Commensalism May Be Common in Plant Communities	267
	7.3	There Are Many Positive Interactions Between Plants and Fungi	267
		7.3.1 There Are Four Kinds of Mycorrhizae	267
		7.3.2 Ectomycorrhizae Are Vital to Forests	270
		7.3.3 Mycorrhizae May Be Less Important in Wet Habitats	272

		7.3.4	Measuring Costs and Benefits	273
		7.3.5	Lichens Are Somewhat Different, and Somewhat Similar	274
		7.3.6	Fungi Can Also Occur in Shoots and Leaves	276
	7.4	Positi	ve Interactions Between Plants and Animals:	
		Part 1	Pollination	276
		7.4.1	Animals Pollinate Flowers	276
		7.4.2	What Are the Mutual Benefits?	278
		7.4.3	Sexual Reproduction Has Costs	279
		7.4.4	Pollination Ecology Was Founded by Sprengel and Darwin	281
		7.4.5	Another Example: Some Flowers Are Pollinated by Flies	282
	7.5	Positi	ve Interactions Between Plants and Animals:	
		Part 2	2 Seed Dispersal	283
		7.5.1	Animals Eat Fruits and Spread Seeds	283
		7.5.2	Rodents, Nuts and Mast Years	284
		7.5.3	Ants Disperse Seeds	286
		7.5.4	Can Seed Dispersal Become an Obligate Mutualism?	287
	7.6	Anim	als Can Defend Plants From Herbivores and Competitors	289
	7.7	Mathe	ematical Models of Mutualism	290
		7.7.1	A Population Dynamics Model	290
		7.7.2	A Cost–Benefit Model	292
	7.8	Mutua	alism Generates Complex Networks	293
		Conch	usion	294
		Review	w Questions	296
		Furthe	er Reading	297
-	CI			200
	Chap	oter 8	Time	299
	8.1	Introd	luction: There Are Many Time Scales in Ecology	300
		8.1.1	Each Ecological Process Has a Time Scale	300
		8.1.2	Some Sources of Evidence: Tree Rings, Sediment Cores	
			and Fossils	300
	8.2	Millio	ns of Years: Flowering Plants and Continental Drift	302
		8.2.1	Flowering Plants Appear in the Cretaceous Era	302
		8.2.2	Continents Derived from Gondawa Have Remarkable Plant	
			Diversity	309
	8.3	Thous	ands of Years: The Pleistocene Glaciations	312
		8.3.1	Erosion and Deposition Were Caused by Glacial Ice	313
		8.3.2	Loess Was Deposited by Wind	313
		8.3.3	Pluvial Lakes Expanded	313
		8.3.4	Drought Affected Tropical Forests	313
		8.3.5	Sea Levels Fell as Ice Sheets Expanded	317
		8.3.6	Plant Distributions Changed	318
		0.5.0	T TOTAL D TO CATO TO CATOLOGIC	310
		8.3.7	Humans Appeared and Spread to New Continents	320

8.4	Hundreds of Years: Succession	322
	8.4.1 Succession Is Directional Change in Vegetation	322
	8.4.2 Four Examples of Succession	323
	8.4.3 Predictive Models for Plant Succession	330
	8.4.4 More on Mechanisms of Succession	331
	8.4.5 There Are Disagreements About Succession	332
	Conclusion	335
	Review Questions	336
	Further Reading	336
Chap	oter 9 Populations	339
9.1	Introduction: Working With Single Species	340
9.2	Population Models and Exponential Growth	341
9.3	How Many Seeds Will a Plant Produce?	343
9.4	The Fate of Seeds	344
	9.4.1 A Typical Type III Survival Curve	344
	9.4.2 Quantitative Studies of the Fates of Seeds	346
	9.4.3 Dragon's Blood Trees in Deserts and Seedlings in Forests	348
	9.4.4 More on Saguaro Seedlings	349
9.5	What Determines the Size of Seeds?	350
9.6	Clones and Genets	351
	9.6.1 The Strawberry–Coral Model	353
	9.6.2 The Elm–Oyster Model	353
	9.6.3 The Aphid–Rotifer Model	354
9.7	A Population Study on the Effects of Herbivores	354
9.8	A Population Study on the Effects of Seed Transport Along a Gradient	355
9.9	Plant Life Spans	358
9.10	Population Ecology of the Brazil Nut Tree: A Size-structured Model	361
	9.10.1 Economic Importance	361
	9.10.2 Ecology	361
	9.10.3 A Size-structured Model Using the Lefkovitch Matrix	361
	Conclusion	364
	Review Questions	364
	Further Reading	365
Char	oter 10 Stress	367
Cital	7.C.1 10 0d 000	
10.1	Introduction: Stress Constrains Growth	368
10.2	Habitats That Lack Resources: Drought as a Widespread Example	369
	10.2.1 Deserts	369
	10.2.2 Grasslands	373
	10.2.3 Mediterranean Shrublands	375
	10.2.4 Rock Barrens	379

10.3	Habitats Where Resources Are Present, Yet Unavailable: Peatlands	382
10.4	Habitats Constrained by a Regulator: Cold	386
	10.4.1 Arctic and Alpine Plants	386
	10.4.2 Deciduous Forests	390
10.5	Habitats Constrained by a Regulator: Salinity	392
	10.5.1 Salinity, Plant Zonation and Physiological Drought	392
	10.5.2 Stress, Zonation and Competition	392
	10.5.3 Salinity and Pulses of Regeneration	393
10.6	Two Extreme Cases of Stress Tolerance	394
	10.6.1 Endolithic Plants	394
	10.6.2 Flooded Plants	394
10.7	Pollution Is a Source of Stress for Plants	397
	10.7.1 Acid Rain: Lessons From the Smoking Hills	398
	10.7.2 Radiation: Lessons From the Brookhaven National Laboratory	398
10.8	Some Theory	399
	10.8.1 Concepts of Stress and Strain	399
	10.8.2 Competition Is a Source of Stress	400
	10.8.3 Stress Creates Metabolic Costs	400
	10.8.4 Evolution and Risk Aversion	401
	10.8.5 Plants in Stressed Habitats Have Low Growth Rates	402
	10.8.6 The CSR Synthesis	402
10.9	Stress Acts at Many Scales	406
	Conclusion	408
	Review Questions	409
	Further Reading	409
Chap	ter 11 Gradients and Plant Communities	411
11.1	Introduction: Gradients Create Pattern in Plant Communities	412
11.2	Describing Pattern Along Obvious Natural Gradients	412
11.3	Multivariate Methods for Pattern Detection	418
	11.3.1 The Data Matrix	418
	11.3.2 Measuring Similarity	419
	11.3.3 Ordination Techniques	420
	11.3.4 Ordinations Based Upon Species Data	421
	11.3.5 Ordinations Can Combine Species and Environmental Data	422
	11.3.6 Functional Simplification in Ordination	425
11.4	Vegetation Classification	426
	11.4.1 Phytosociology	427
	11.4.2 Classification for Land Management	431
11.5	Gradients and Communities	435
	11.5.1 Clements and Gleason	435
	11.5.2 The Temporary Victory of the Gleasonian View	436
	11.5.3 Null Models and Patterns Along Gradients	440
		110

11.6	Empirical Studies of Patterns Along Gradients	441
	Conclusion	448
	Review Questions	449
	Further Reading	449
Chap	oter 12 Diversity	451
12.1	Introduction: Why Are There So Many Kinds of Plants?	452
12.2	Large Areas Have More Plant Species	453
12.3	Areas With More Kinds of Habitat Have More Plant Species	455
12.4	Equatorial Areas Have More Plant Species	457
12.5	More Examples of Plant Species Diversity	462
	12.5.1 Mediterranean Climate Regions	462
	12.5.2 Carnivorous Plants	463
	12.5.3 Deciduous Forests	463
	12.5.4 Diversity, Biogeography and the Concept of Endemism	464
12.6	Models to Describe Species Diversity at Smaller Scales	467
	12.6.1 Intermediate Biomass	467
	12.6.2 Intermediate Disturbance	468
	12.6.3 Centrifugal Organization	472
12.7	Relative Abundance: Dominance, Diversity and Evenness	474
12.8	Microcosm Experiments on Richness and Diversity	479
12.9	Field Experiments on Richness and Diversity	482
12.10	Implications for Conservation	484
	Conclusion	486
	Review Questions	487
	Further Reading	487
Chap	oter 13 Conservation and Management	491
13.1	Introduction: It Is Time to Apply What We Know	492
13.2	Some Historic Examples of Vegetation Degradation	492
	13.2.1 Ancient Assyria	492
	13.2.2 Ancient Rome	493
	13.2.3 Louisiana Wetlands	493
	13.2.4 Easter Island	498
	13.2.5 The Galapagos: Pinta Island	500
13.3	The World Needs Large Protected Areas	502
	13.3.1 Designing a Protected Area System	502
	13.3.2 There Are Different Levels of Protection	504
	13.3.3 Biological Hotspots Are a Priority	507
	13.3.4 Large Forests Are a Priority	510
	13.3.5 Large Wetlands Are a Priority	512
	13.3.6. A Global Assessment of Endemic Plant Conservation	512

13.4	Five Advanced Topics in Conservation Management	514
	13.4.1 Communities and Ecosystems Provide Services	514
	13.4.2 A Full Protected Area System Has Buffers and Corridors	516
	13.4.3 There Are Thresholds in the Process of Degradation	517
	13.4.4 Restoration of Degraded Vegetation Types	518
	13.4.5 Indicators Allow for Efficient Monitoring	520
	Conclusion	
	Review Questions	523
	Further Reading	524
Refere	nces	525
Figure	and Table Credits	577
Glossary		580
Index		586