Preface to the third edition of Volume 2

Preface to the second edition of Volume 2

Preface to the first edition of Volume 2

CHAPTER 1 ELECTROSTATICS: CHARGES AND FIELDS

1.1	Electric charge	1
1.2	Conservation of charge	4
1.3	Quantization of charge	5
1.4	Coulomb's law	7
1.5	Energy of a system of charges	11
1.6	Electrical energy in a crystal lattice	14
1.7	The electric field	16
1.8	Charge distributions	20
1.9	Flux blems	22
1.10	Gauss's law	23
1.11	Field of a spherical charge distribution	26
1.12	Field of a line charge	28
1.13	Field of an infinite flat sheet of charge	29
1.14	The force on a layer of charge	30
1.15	Energy associated with the electric field	33
1.16	Applications	35

CONTENTS

xiii

xvii

xxi

CONTENTS

	Chapter summary	38
	Problems	39
	Exercises	47
	TER 2	
THE E	LECTRIC POTENTIAL	58
		50
2.1	Line integral of the electric field	59
2.2	Potential difference and the potential function	61
2.3	Gradient of a scalar function	63
2.4	Derivation of the field from the potential	65
2.5	Potential of a charge distribution	65
2.6	Uniformly charged disk	68
2.7	Dipoles	73
2.8	Divergence of a vector function	78
2.9	Gauss's theorem and the differential form of Gauss's law	79
2.10	Receive Stationary exceptions of all statistical statistical statistics	81
2.10	The divergence in Cartesian coordinates The Laplacian	85
2.12	Laplace's equation	86
2.13	Distinguishing the physics from the mathematics	88
2.14	The curl of a vector function	90
2.15	Stokes' theorem	92
2.16	The curl in Cartesian coordinates	
2.17	The physical meaning of the curl	95
2.18	Applications	100
	Chapter summary	103
	Problems	105
	Exercises	112
CHAP		
ELECT	TRIC FIELDS AROUND CONDUCTORS	124
3.1	Conductors and insulators	125
3.2	Conductors in the electrostatic field	126
3.3	The general electrostatic problem and the episito	1.8
22	uniqueness theorem	132
3.4	Image charges wal a auso	136
3.5	Capacitance and capacitors of some log is to bleif	141
3.6	Potentials and charges on several conductors	147
3.7	Energy stored in a capacitor all all the based	149
3.8	Other views of the boundary-value problem	151
3.9	Applications Chapter summary	153 155
	Chapter Summary	100

	Problems	155
	Exercises	163
		BO
CHAP'	Change in B at a current sheet	2.0
ELECT	RIC CURRENTS	177
ATE		
4.1	Electric current and current density	177
4.2	Steady currents and charge conservation	180
4.3	Electrical conductivity and Ohm's law	181
4.4	The physics of electrical conduction	189
4.5	Conduction in metals	198
4.6	Semiconductors	200
4.7	Circuits and circuit elements	204
4.8	Energy dissipation in current flow	207
4.9	Electromotive force and the voltaic cell	209
4.10	Networks with voltage sources	212
4.11	Variable currents in capacitors and resistors	215
4.12	Applications and a devoid polyon bot endoubled	217
	Chapter summary	221
	Problems and molificated and public privom good	222
	Exercises an epilode bleit end this good visitolisi2	226
CHAP'		7.0
THE F	IELDS OF MOVING CHARGES	235
304	Self-inductance	000
5.1	From Oersted to Einstein	236
5.2	magnetie tereee	237
5.3	model of one go and one of the go	239
5.4		241
5.5	Electric field measured in different frames	243
EG	of reference Field of a point charge moving with constant velocity	243
5.6 5.7	Field of a charge that starts or stops	251
5.8	Force on a moving charge	255
5.9	Interaction between a moving charge and other	200
0.5	moving charges	259
	Chapter summary	267
	Problems enotytos Isitrienogxe xelamoO	268
	Exercises	270
	Admittance and impedance	2.8
CHAP		
	AGNETIC FIELD	277
	Chapter summary	
6.1	Definition of the magnetic field	278
6.2	Some properties of the magnetic field	286

6.3	Vector potential	293
6.4	Field of any current-carrying wire	296
6.5	Fields of rings and coils	299
6.6	Change in B at a current sheet	303
6.7	How the fields transform	306
6.8	Rowland's experiment	314
6.9	Electrical conduction in a magnetic field:	
	the Hall effect	314
6.10	Applications	317
	Chapter summary	322
	Problems eletern al acitoubnoO	323
	Exercises	331
		5.00
СНАР		
	ROMAGNETIC INDUCTION	342
919	Networks with voltage sources	4.10
7.1	Faraday's discovery	343
7.2	Conducting rod moving through a uniform	4.19
166	magnetic field	345
7.3	Loop moving through a nonuniform magnetic field	346
7.4	Stationary loop with the field source moving	352
7.5	Universal law of induction	355
7.6	Mutual inductance	050
7.7	A reciprocity theorem	362
7.8	Self-inductance	364
7.9	Circuit containing self-inductance	366
7.10	Energy stored in the magnetic field	368
7.11	Applications	369
241	Chapter summary	373
	Problems	374
	Exercises	380
	Field of a point charge moving with constant velocit	000
CHAP		
	INATING-CURRENT CIRCUITS	388
3.1	Interaction between a moving charge and ether ^O	000
8.1	A resonant circuit	388
8.2	Alternating current	394
8.3	Complex exponential solutions	402
8.4	Alternating-current networks	405
8.5	Admittance and impedance	408
8.6	Power and energy in alternating-current circuits	
8.7	Applications	
0.7	Chapter summary	420
	Problems bleit of engement to not integ	420
	Exercises	421
		4774

CHAP	The absence of magnetic "charge" P Ran	
MAXW	ELL'S EQUATIONS AND ELECTROMAGNETIC	
WAVE	The force on a dipole in an external field 3	430
	Electric currents in atoms "priceira ai printere 2"	430
9.1	"Something is missing	
9.2	The displacement current	433
9.3	Maxwell's equations	436
9.4	An electromagnetic wave	438
9.5	Other waveforms; superposition of waves	441
9.6	Energy transport by electromagnetic waves	446
9.7	How a wave looks in a different frame	452
9.8	Applications	454
	Chapter summary	455
	Problems	457
	Exercises	461
	rer 10	
ELEC1	RIC FIELDS IN MATTER	466
000	District	467
10.1	Dielectrics	467
10.2	The moments of a charge distribution	471
10.3		474
10.4	The torque and the force on a dipole in an elosito	
	external field	477
10.5	Atomic and molecular dipoles; induced a religio	12.5
	dipole moments a religino	479
10.6	Permanent dipole moments	482
10.7	The electric field caused by polarized matter	483
10.8	Another look at the capacitor	489
10.9	The field of a polarized sphere	492
10.10	A dielectric sphere in a uniform field	495
10.11	The field of a charge in a dielectric medium, and	
	Gauss's law	497
10.12	A microscopic view of the dielectric	500
10.13	Polarization in changing fields	504
10.14	The bound-charge current	505
10.15	An electromagnetic wave in a dielectric	507
10.16	Applications	509
	Chapter summary	511
	Problems	513
	Exercises	516
CHAP		
MAGN	ETIC FIELDS IN MATTER	523
11.1	How various substances respond to a	
789	magnetic field	524

11.2	The absence of magnetic "charge"	529
11.3	The field of a current loop	531
11.4	The force on a dipole in an external field	535
11.5	Electric currents in atoms	540
11.6	Electron spin and magnetic moment	546
11.7	Magnetic susceptibility	549
11.8	The magnetic field caused by magnetized matter	551
11.9	The field of a permanent magnet	557
11.10	Free currents, and the field H	559
11.11	Ferromagnetism	565
11.12	Applications	570
	Chapter summary	573
	Problems	575
	Exercises	577
CHAD	TER 12	
a climate a	TIONS TO THE PROBLEMS	586
12.1	Chapter 1	586
12.2	Chapter 2	611
12.3	Chapter 3	636
12.4	Chapter 4 bleit lametxe	660
12.5	Chapter 5 beguber selocib selucelom bas pirnotA	678

12.10	Chapter 10	
12.11	Chapter 11	
	nediumanday	

12.6

12.7

12.8

12.9

Chapter 6

Chapter 7

Chapter 9

Chapter 8

Appendix A: Differences between SI and Gaussian units

Appendix B: SI units of common quantities

Appendix C: Unit conversions

Appendix D: **SI and Gaussian formulas**

778

774

684

707

722

734

744

755

762

769

Appendix E: Exact relations among SI and Gaussian units 789

CONTENTS

Appendix F: Curvilinear coordinates	791
Appendix G: A short review of special relativity	804
Appendix H: Radiation by an accelerated charge	812
Appendix I: Superconductivity	817
Appendix J: Magnetic resonance	821
Appendix K: Helpful formulas/facts	825
References	831
Index	833

material, in the hopes that the trend will continue. The main changes from the second edition are (1) the conversion from Gaussian units to SI units, and (2) the addition of many solved problems and examples. The first of these changes is due to the last that the vast majority of courses on electricity and magnetism are now taught of SI units. The second edition fell out of print at one point, and it was hard to watch such a wonderful book fade away because it wasn't compatible with the very the subject is presently taught. Of course these are differing opinics as to which system of units is "better" for for introductory course. But this usue is moot, given the reality of these courses.

For students interested in working with Gaussian unity or for instructors who want their students to gain exposure to both systems. I have occased a number of appendices that should be helpful. Appendix A discusses the differences between the/SI and Gaussian systems. Appendix C derives the conversion factors between the corresponding units in the two systems. Appendix D explains how to convert formulas from SI to Gaussian: it then lists, side by side, the SI and Gaussian expressions for every important result in the book. A little time spent looking at this appendix will make it clear how to convert formulas from one system to the other.

The second main change in the book is the addition of many solved problems, and also many new examples in the text. Each chapter ends with "problems" and "exercises." The solutions to the "problems" are located in Chapter 12. The only official difference between the problems