Contents

Prefe	àce	page x
Introduction and data types		
1.1	Why ordination?	1
1.2	Data types	4
1.3	Data transformation and standardisation	7
1.4	Missing values	11
1.5	Types of analyses	12
Usin	a Canoco 5	15
00111		
2.1	Philosophy of Canoco 5	15
2.2	Data import and editing	17
2.3	Defining analyses	24
2.4	Visualising results	33
2.5	Beware, CANOCO 4.x users!	36
Ехре	erimental design	39
3.1	Completely randomised design	39
3.2	Randomised complete blocks	40
3.3	Latin square design	41
3.4	Pseudoreplicates	42
3.5	Combining more than one factor	44
3.6	Following the development of objects in time: repeated observations	45
3.7	Experimental and observational data	48
Basi	ics of gradient analysis	50
4.1	Techniques of gradient analysis	51
4.2	Models of response to gradients	51
4.3	Estimating species optima by weighted averaging	53
4.4	Calibration	56
4.5	Unconstrained ordination	57

	4.6	Constrained ordination	60
	4.7	Basic ordination techniques	61
	4.8	Ordination axes as optimal predictors	62
	4.9	Ordination diagrams	64
	4.10) Two approaches	66
	4.11	Testing significance of the relation with explanatory variables	66
	4.12	Monte Carlo permutation tests for the significance of regression	67
	4.13	Relating two biotic communities	68
	4.14	Community composition as a cause: using reverse analysis	69
5	Pern	nutation tests and variation partitioning	71
	5.1	Permutation tests: the philosophy	71
	5.2	Pseudo-F statistics and significance	72
	5.3	Testing individual constrained axes	74
	5.4	Tests with spatial or temporal constraints	75
	5.5	Tests with hierarchical constraints	79
	5.6	Simple versus conditional effects and stepwise selection	83
	5.7	Variation partitioning	88
	5.8	Significance adjustment for multiple tests	91
6	Simi	larity measures and distance-based methods	92
	6.1	Similarity measures for presence-absence data	93
	6.2	Similarity measures for quantitative data	96
	6.3	Similarity of cases versus similarity of communities	101
	6.4	Similarity between species in trait values	102
	6.5	Principal coordinates analysis	103
	6.6	Constrained principal coordinates analysis (db-RDA)	106
	6.7	Non-metric multidimensional scaling	107
	6.8	Mantel test	108
7	Clas	sification methods	112
	7.1	Example data set properties	112
	7.2	Non-hierarchical classification (K-means clustering)	113
	7.3	Hierarchical classification	116
	7.4	TWINSPAN	121
8	Regr	ression methods	129
	8 1	Regression models in general	120
	8.2	General linear model: terms	129
	83	Generalized linear models (GLM)	131
	8.4	Loess smoother	135

	Contents	vii
	8.5 Generalized additive models (GAM)	136
	8.6 Mixed-effect models (LMM, GLMM and GAMM)	137
	8.7 Classification and regression trees (CART)	139
	8.8 Modelling species response curves with Canoco	140
9	Interpreting community composition with functional traits	151
	9.1 Required data	152
	9.2 Two approaches in traits – environment studies	154
	9.3 Community-based approach	158
	9.4 Species-based approach	162
10	Advanced use of ordination	167
	10.1 Principal response curves (PRC)	167
	10.2 Separating spatial variation	169
	10.3 Linear discriminant analysis	173
	10.4 Hierarchical analysis of community variation	174
	10.5 Partitioning diversity indices into alpha and beta components	177
	10.6 Predicting community composition	182
11	Visualising multivariate data	184
	11.1 Reading ordination diagrams of linear methods	186
	11.2 Reading ordination diagrams of unimodal methods	195
	11.3 Attribute plots	199
	11.4 Visualising classification, groups, and sequences	202
	11.5 T-value biplot	205
12	Case study 1: Variation in forest bird assemblages	208
	12.1 Unconstrained ordination: portraying variation in bird community	209
	12.2 Simple constrained ordination: the effect of altitude on bird	
	community 000 https://www.community	215
	12.3 Partial constrained ordination: additional effect of other habitat	
	characteristics	218
	12.4 Separating and testing alpha and beta diversity	221
13	Case study 2: Search for community composition patterns and	
	their environmental correlates: vegetation of spring meadows	226
	13.1 Unconstrained ordination	227
	13.2 Constrained ordination	230
	13.3 Classification	237
	13.4 Suggestions for additional analyses	238
	13.5 Comparing two communities	239

/i	i	i	Contents

14	Case study 3: Separating the effects of explanatory variables	246
	14.1 Introduction	246
	14.2 Data	247
	14.3 Changes in species richness and composition	247
	14.4 Changes in species traits	255
15	Case study 4: Evaluation of experiments in randomised complete blocks	258
	15.1 Introduction	258
	15.2 Data	258
	15.3 Analysis	259
	15.4 Calculating ANOVA using constrained ordination	265
16	Case study 5: Analysis of repeated observations of species composition from a factorial experiment	267
	16.1 Introduction	267
	16.2 Experimental design	267
	16.3 Data coding and use	268
	16.4 Univariate analyses	270
	16.5 Constrained ordinations	270
	16.6 Principal response curves	275
	16.7 Temporal changes across treatments	280
	16.8 Changes in composition of functional traits	285
17	Case study 6: Hierarchical analysis of crayfish community variation	301
	17.1 Data and design	301
	17.2 Differences among sampling locations	302
	17.3 Hierarchical decomposition of community variation	305
18	Case study 7: Analysis of taxonomic data with discriminant analysis	
	and distance-based ordination	309
	18.1 Data	309
	18.2 Summarising morphological data with PCA	310
	18.3 Linear discriminant analysis of morphological data	313
	18.4 Principal coordinates analysis of AFLP data	317
	18.5 Testing taxon differences in AFLP data using db-RDA	320
	18.6 Taking populations into account	322
19	Case study 8: Separating effects of space and environment on oribatid	
	community with PCNM	324
	19.1 Ignoring the space	324
	19.2 Detecting spatial trends	326

	Contents	ix
	19.3 All-scale spatial variation of community and environment	328
	19.4 Variation partitioning with spatial predictors	332
	19.5 Visualising spatial variation	333
20	Case study 9: Performing linear regression with redundancy analysis	337
	20.1 Data	337
	20.2 Linear regression using program R	337
	20.3 Linear regression with redundancy analysis	340
	20.4 Fitting generalized linear models in Canoco	342
	Appendix A Glossary	343
	Appendix B Sample data sets and projects	346
	Appendix C Access to Canoco and overview of other software	347
	Appendix D Working with R	350
	References	351
	Index to useful tasks in Canoco 5	359
	Subject index	360