The new edition of Pierre Julien's acclaimed textbook brings the subject of sedimentation and erosion completely up to date. The structure of the first edition is essentially unchanged, but all the chapters have been updated. with several chapters reworked and expanded significantly. Examples of the new additions include the Modified Einstein Procedure, sediment transport by size fractions, sediment transport of sediment mixtures, the concept of added mass, and new solutions to the Einstein Integrals. Many new examples and exercises have been added. Sedimentation and Erosion is an essential textbook for students in civil and environmental engineering as well as the geosciences, and is also valuable as a handbook for researchers and professionals in engineering, the geosciences, and the water sciences.

Cover illustration: Horseshoe Bend in the Colorado River, near Page, Arizona. © Doug James/Shutterstock.com.

PRAISE FOR THE FIRST EDITION:

"... [presents] the mechanics of sediment motion alongside those subjects in fluid mechanics that are fundamental to understanding sediment transport. The interweaving of the two subjects is carried out particularly well ... Each topic is covered clearly, with many carefully designed figures, examples, and exercises ... an excellent primer on both fundamental concepts of sediment transport theory and methods for practical applications ... well written, and nicely illustrated, and it will serve as either a handbook for workers in the field or a textbook for beginning students of the subject. Julien has done a truly admirable job in making ... [a] difficult subject much more accessible to beginning Earth scientists and engineers."

JONATHAN NELSON, Journal of Hydraulic Engineering

"... this well-written text can be equally useful to undergraduates, graduates, geologists, and geophysicists ..." CHRISTOPHER KENDALL, The Leading Edge

"...a welcome addition ... logically planned out, well written with clear explanations."

R.L. SOULSBY, Journal of Fluid Mechanics

"... clearly and concisely written, covers not only the theory but also measurement methods and also provides many worked examples. It will serve well its primary purpose as a textbook for post-graduate courses on erosion and sedimentation ... thoroughly recommended." IAN R. CALDER, Hydrology and Earth System Sciences

" ... an excellent and accessible treatment of the 'classic' engineering approach to erosion and sedimentation ... a worthy primer for those requiring mastery over the essential technicalities of hydraulic analysis."

NICHOLAS J. CLIFFORD, Progress in Physical Geography

Preface			page xi	
List of symbols				xiii
1	Introd	uction		1
2	Physic	cal properties and dimensional analysis		4
	2.1	Dimensions and units		4
	2.2	Physical properties of water		7
	2.3	Physical properties of sediment		10
	2.4	Dimensional analysis		19
3	Mecha	anics of sediment-laden flows		28
	3.1	Kinematics of flow		28
	3.2	Equation of continuity		30
	3.3	Equations of motion		37
	3.4	Euler equations		41
	3.5	Bernoulli equation		45
	3.6	Momentum equations		47
	3.7	Power equation		54
4	Partic	le motion in inviscid fluids		64
	4.1	Irrotational flow around a circular cylinder		66
	4.2	Irrotational flow around a sphere		74
5	Partic	le motion in Newtonian fluids		84
	5.1	Navier-Stokes equations		84
	5.2	Newtonian flow around a sphere		88
	5.3	Drag force on a sphere		90
	5.4	Drag coefficient and fall velocity		94
	5.5	Rate of energy dissipation		100
	5.6	Laboratory measurements of particle size		103

viii		Contents	
6	Turbulent velocity profiles		
	6.1	Logarithmic velocity profiles	115
	6.2	Smooth and rough plane boundaries	117
	6.3	Resistance to flow	120
	6.4	Deviations from logarithmic velocity profiles	126
	6.5	Open-channel flow measurements	132
7	Incipi	ent motion	143
	7.1	Angle of repose	143
	7.2	Submerged incipient motion	146
	7.3	Moment stability analysis	155
	7.4	Simplified stability analysis	162
8	Bedfo	orms	170
	8.1	Mechanics of bedforms	170
	8.2	Bedform classification and geometry	174
	8.3	Resistance to flow with bedforms	183
	8.4	Field observations of bedforms	188
9	Bedlo	ad	195
	9.1	Bedload equations	196
	9.2	Bed layer characteristics	202
	9.3	Bed sediment sampling	203
	9.4	Bedload measurements	206
10	Suspe	ended load	216
	10.1	Sediment concentration	216
	10.2	Advection-diffusion equation	218
	10.3	Turbulent mixing of washload	221
	10.4	Suspended sediment concentration profiles	229
	10.5	Suspended load	236
	10.6	Hyperconcentrations	239
	10.7	Field measurements of suspended sediment	254
11	Total	load	264
	11.1	Sediment transport capacity	266
	11.2	Sediment-rating curves	290
	11.3	Short- and long-term sediment load	296
	11.4	Sediment sources and sediment yield	301
12	Reser	voir sedimentation	319
	12.1	Incoming sediment load	320
	12.2	Reservoir hydraulics	320
	12.3	Trap efficiency and aggradation	322
	12.4	Dry specific weight of sediment deposits	325
	12.5	Life expectancy of reservoirs	327

Contents	ix		
12.6 Density currents	328		
12.7 Reservoir sedimentation surveys	332		
12.8 Control measures	333		
Appendix A: Einstein's Sediment Transport Method			
Appendix B: Useful mathematical relationships			
Bibliography			
Index			