Contents

Chapter 1 Introduction: organisms, sediments, and water movements 1 Life in soft shores versus life on rocky shores 2 The distribution of sediments 5 Water movements 6 **Chapter 2** The world of particles: a variety of habitats 12 Sediments as places to live 12 How organisms affect sediments 19 Conditions in water above the sediment 27 Suspended particles 32 Techniques for analysing sediments 34 **Chapter 3** The coarse extreme: life on sandy beaches 35 35 Some physical features of sandy shores 36 The distribution of sandy-shore organisms 38 Organisms and their adaptations Vertical distribution on the shore: 'zonation' and 46 its causes 49 **Biological** interactions 54 Food webs and energy flow 56 Techniques A fine option: life on mudflats and in Chapter 4 58 seagrass beds 59 Some physical features of mudflats The diversity and distribution of muddy-shore 60 organisms 65 Organisms and their adaptations Distribution on the mudflats: Why are organisms found 76 where they are?

R.

79
88
89
91
91
93
95
98
107 116
119
119
121
129
132
132
133
135
142
150
151
151
155
160
162
167
168
170
170
173
179
181
185
185

CONTENTS

ix

Chapter 10	Estuarine ecosystems	187
	Food webs: who eats what?	187
	Energy flow	191
	Modelling and predictions	195
	Techniques	198
Chapter 11	Uses and abuses: human impacts	
· • • •	and counter-measures	200
	Detecting damage—Has there been pollution?	200
	The problems: impacts on estuarine and lagoonal	
	ecosystems	201
	The answers: treating, minimizing, and preventing	
	damage	215
	O late wading	
Further read	ling	220
	E shale, mud	
References		222
Glossary		237
Appendix	A brief classification of selected	
Appendix		
	organisms	239
Index		243

eake, fiddler crabe (*like* app.) roats over the flats while mathematic in spp.) plough through the surface of the most in search of algal-rich accumulate in hundreds around the hodies of stranded fish or crabs. In erro, the shells of another mathemail, *Hydrolia* also, may accumulate in not densities. These anals are only about 5 mm long, but have been id on some matihins at up to 300 000 individuals in 1 m². On the very of the maid, unicellular algae, often mainly distorm but sometimes athetic englenoids, may form a brown or green film where 20 000 cells ad in each square continence.

It observation and trapping at high tide shows an influx of predatory fish to flouinders (*Planestons* app.) and crabs such as *Corcinus* (in the Severa) or one (in the Chesapeake). *Guliancus* is so successful this east-coast American as may catch 50 000 sounce of them in a year. Observation within the trais provides further evidence that both the Severa estuary and Chesapeake its extremely rich and productive areas, worms, molhacs, crustateans, and concertebrates can be found in profusion.

e-merant to modificu, open sandy beaches such as those of the Oregon coast in sector USA, or those of southern Africa and Australia, show little obvious