CONTENTS

CONT	ENTS	v
PREFA	CE	vii
CHAP'	ΓER ONE / PRELIMINARIES	1
1.1	Introduction	1
1.2	A survey of Boolean propositional logic	6
1.3	Boolean predicate calculus	10
1.4	Function symbols; varieties of algebras	15
1.5	Lattices and Boolean algebras	20
1.6	Ordered Abelian groups	22
CHAP'	TER TWO / MANY-VALUED PROPOSITIONAL CALCULI	27
2.1	Continuous t-norms and their residua	27
2.2	The basic many-valued logic	35
2.3	Residuated lattices; a completeness theorem	46
2.4	Some additional topics	56
CHAP'	TER THREE / ŁUKASIEWICZ PROPOSITIONAL LOGIC	63
3.1	Getting Łukasiewicz logic	63
3.2	MV-algebras; a completeness theorem	70
3.3	Rational Pavelka logic	79
CHAP'	TER FOUR / PRODUCT LOGIC, GÖDEL LOGIC	89
4.1	Product logic	89
4.2	Gödel logic	97
4.3	Appendix: Boolean logic	103
CHAP'	TER FIVE / MANY-VALUED PREDICATE LOGICS	109
5.1	The basic many-valued predicate logic	109
5.2	Completeness	119
5.3	Axiomatizing Gödel logic	124
5.4	Łukasiewicz and product predicate logic	127
5.5	Many-sorted fuzzy predicate calculi	139
5.6	Similarity and equality	141

CONTENTS

CHAPT	TER SIX / COMPLEXITY AND UNDECIDABILITY	149
6.1	Preliminaries	149
6.2	Complexity of fuzzy propositional calculi	154
6.3	Undecidability of fuzzy logics	161
СНАРТ	TER SEVEN / ON APPROXIMATE INFERENCE	167
7.1	The compositional rule of inference	168
7.2	Fuzzy functions and fuzzy controllers	177
7.3	An alternative approach to fuzzy rules	189
CHAPT	TER EIGHT / GENERALIZED QUANTIFIERS AND MODALI-	
TIE	S	195
8.1	Generalized quantifiers in Boolean logic	195
8.2	Two-valued modal logics	205
8.3	Fuzzy quantifiers and modalities	215
8.4	On "probably" and "many"	228
8.5	More on "probably" and "many"	238
СНАРТ	ER NINE / MISCELLANEA	249
9.1	Takeuti-Titani fuzzy logic	249
9.2	An abstract fuzzy logic	261
9.3	On the liar paradox	265
9.4	Concluding remarks	271
СНАРТ	ER TEN / HISTORICAL REMARKS	277
10.1	Until the forties	277
10.2	The fifties	278
10.3	The sixties	279
10.4	The seventies	279
10.5	The eighties	280
10.6	The nineties	281
DDDD	1 Product logic	
REFER		283
INDEX		295
		275