Detailed Contents

Chapter 1	
Cells: The Fundamental Units of Life	1
UNITY AND DIVERSITY OF CELLS	2
Cells Vary Enormously in Appearance and Function	2
Living Cells All Have a Similar Basic Chemistry	3
All Present-Day Cells Have Apparently Evolved from the Same Ancestral Cell	4
Genes Provide the Instructions for Cell Form, Function, and Complex Behavior	5
CELLS UNDER THE MICROSCOPE	5
The Invention of the Light Microscope Led to the Discovery of Cells	6
Light Microscopes Allow Examination of Cells and Some of Their Components	7
The Fine Structure of a Cell Is Revealed by Electron Microscopy	8
THE PROKARYOTIC CELL	12
Prokaryotes Are the Most Diverse and Numerous Cells on Earth	13
The World of Prokaryotes Is Divided into Two Domains: Bacteria and Archaea	15
THE EUKARYOTIC CELL	15
The Nucleus Is the Information Store of the Cell	15
Mitochondria Generate Usable Energy from Food to Power the Cell	16
Chloroplasts Capture Energy from Sunlight	18
Internal Membranes Create Intracellular Compartments with Different Functions	19
The Cytosol Is a Concentrated Aqueous Gel of Large and Small Molecules	21
The Cytoskeleton Is Responsible for Directed Cell Movements	21
The Cytoplasm Is Far from Static	22
Eukaryotic Cells May Have Originated as Predators	23
MODEL ORGANISMS	26
Molecular Biologists Have Focused on E. coli	27
Brewer's Yeast Is a Simple Eukaryotic Cell	27
Arabidopsis Has Been Chosen as a Model Plant	28
Model Animals Include Flies, Fish, Worms, and Mice	28
Biologists Also Directly Study Human Beings and Their Cells	32

Comparing Ganama Sequences Royaals Life's	
Common Heritage	33
Genomes Contain More Than Just Genes	35
Essential Concepts	35
Questions	37
Chapter 2	
Chemical Components of Cells	39
CHEMICAL BONDS	40
Cells Are Made of Relatively Few Types of Atoms	40
The Outermost Electrons Determine How Atoms Interact	41
Covalent Bonds Form by the Sharing of Electrons	44
There Are Different Types of Covalent Bonds	45
Covalent Bonds Vary in Strength	46
Ionic Bonds Form by the Gain and Loss of Electrons	46
Noncovalent Bonds Help Bring Molecules	47
logether in Cells	47
Bonds For Many Biological Molecules	48
Some Polar Molecules Form Acids and Bases in Water	49
SMALL MOLECULES IN CELLS	50
A Cell Is Formed from Carbon Compounds	50
Cells Contain Four Major Families of Small Organic Molecules	51
Sugars Are Both Energy Sources and Subunits of Polysaccharides	52
Fatty Acid Chains Are Components of Cell	
Membranes	53
Amino Acids Are the Subunits of Proteins	55
Nucleotides Are the Subunits of DNA and RNA	56
MACROMOLECULES IN CELLS	58
Each Macromolecule Contains a Specific Sequence of Subunits	59
Noncovalent Bonds Specify the Precise Shape of a Macromolecule	62
Noncovalent Bonds Allow a Macromolecule to Bind Other Selected Molecules	63
Essential Concepts	64
Questions	80

Chapter 3 Energy, Catalysis, and Biosynthesis	83
THE USE OF ENERGY BY CELLS	84
Biological Order Is Made Possible by the Release of Heat Energy from Cells	84
Cells Can Convert Energy from One Form to Another	86
Photosynthetic Organisms Use Sunlight to Synthesize Organic Molecules	87
Cells Obtain Energy by the Oxidation of Organic Molecules	88
Oxidation and Reduction Involve Electron Transfers	89
FREE ENERGY AND CATALYSIS	90
Chemical Reactions Proceed in the Direction that Causes a Loss of Free Energy	91
Enzymes Reduce the Energy Needed to Initiate Spontaneous Reactions	91
The Free-Energy Change for a Reaction Determines Whether It Can Occur	93
∆G Changes As a Reaction Proceeds Toward Equilibrium	94
The Standard Free-Energy Change, ΔG° , Makes it Possible to Compare the Energetics of Different Reactions	94
The Equilibrium Constant Is Directly Proportional to ΔG°	95
In Complex Reactions, the Equilibrium Constant Includes the Concentrations of All Reactants and Products	98
The Equilibrium Constant Indicates the Strength of Molecular Interactions	98
For Sequential Reactions, the Changes in Free Energy Are Additive	99
Thermal Motion Allows Enzymes to Find Their Substrates	100
V_{\max} and K_{M} Measure Enzyme Performance	102
ACTIVATED CARRIERS AND BIOSYNTHESIS	103
The Formation of an Activated Carrier Is Coupled to an Energetically Favorable Reaction ATP Is the Most Widely Used Activated Carrier	103 107
Energy Stored in ATP Is Often Harnessed to Join Two Molecules Together	109
NADH and NADPH Are Both Activated Carriers of Electrons	109
NADPH and NADH Have Different Roles in Cells	110
Cells Make Use of Many Other Activated Carriers	111
The Synthesis of Biological Polymers Requires an Energy Input	113
Essential Concepts	116
Questions	117

Chapter 4 D.

Protein Structure and Function	121
THE SHAPE AND STRUCTURE OF PROTEINS	123
The Shape of a Protein Is Specified by Its Amino Acid Sequence	123
Proteins Fold into a Conformation of Lowest Energy	126
Proteins Come in a Wide Variety of Complicated Shapes	127
The α Helix and the β Sheet Are Common Folding Patterns	130
Helices Form Readily in Biological Structures	130
β Sheets Form Rigid Structures at the Core of Many Proteins	132
Proteins Have Several Levels of Organization	132
Regions	134
Few of the Many Possible Polypeptide Chains	105
Will Be Useful	135
Proteins Can Be Classified into Families	136
Large Protein Molecules Often Contain More Than One Polypeptide Chain	137
Proteins Can Assemble into Filaments, Sheets, or Spheres	138
Some Types of Proteins Have Elongated Fibrous Shapes	139
Extracellular Proteins Are Often Stabilized by Covalent Cross-Linkages	140
HOW PROTEINS WORK	141
All Proteins Bind to Other Molecules	141
There Are Billions of Different Antibodies, Each with a Different Binding Site	143
Enzymes Are Powerful and Highly Specific Catalysts	144
Lysozyme Illustrates How an Enzyme Works	145
Many Drugs Inhibit Enzymes	149
Tightly Bound Small Molecules Add Extra Functions to Proteins	149
HOW PROTEINS ARE CONTROLLED	150
The Catalytic Activities of Enzymes Are Often Regulated by Other Molecules	151
Allosteric Enzymes Have Two or More Binding Sites That Influence One Another	151
Phosphorylation Can Control Protein Activity by Causing a Conformational Change	152
Covalent Modifications Also Control the Location and Interaction of Proteins	154
GTP-Binding Proteins Are Also Regulated by the Cyclic Gain and Loss of a Phosphate Group	155
ATP Hydrolysis Allows Motor Proteins to Produce Directed Movements in Cells	155
Proteins Often Form Large Complexes That Function as Protein Machines	156

HOW PROTEINS ARE STUDIED	157	Sh
Proteins Can be Purified from Cells or Tissues	157	Pr
Determining a Protein's Structure Begins with Determining Its Amino Acid Sequence	158	Te
Large-Scale Production, Design, and Analysis of Almost Any Protein	160	DI
The Relatedness of Proteins Aids the Prediction of Protein Structure and Function	161	
Essential Concepts	168	Ce
Questions	169	А
Chapter 5 DNA and Chromosomes	171	Do
THE STRUCTURE OF DNA	172	
A DNA Molecule Consists of Two Complementary Chains of Nucleotides	y 173	Ho
The Structure of DNA Provides a Mechanism for Heredity	178	Fa
THE STRUCTURE OF EUKARYOTIC CHROMOSOMES	179	A
Eukaryotic DNA Is Packaged into Multiple		Es
Chromosomes	179	Q
Chromosomes Contain Long Strings of Genes	180	CL
DNA Replication and Chromosome		
Segregation	182	
Interphase Chromosomes Are Not Randomly Distributed Within the Nucleus	183	Pc
The DNA in Chromosomes Is Always Highly Condensed	184	Tra
Nucleosomes Are the Basic Units of Eukaryotic Chromosome Structure	185	Ce
Chromosome Packing Occurs on Multiple Levels	187	Sig
THE REGULATION OF CHROMOSOME	188	Ini
Changes in Nucleosome Structure Allow		
Access to DNA	188	Eu
Interphase Chromosomes Contain Both Condensed and More Extended Forms		Eu
of Chromatin	190	In
Essential Concepts -	192	
Questions	193	Int
Chapter 6 DNA Replication, Repair,		
and Recombination	197	IVI
DNA REPLICATION	198	ml
Base-Pairing Enables DNA Replication	198	
DNA Synthesis Begins at Replication Origins	199	Th
Two Replication Forks Form at Each Replication Origin	199	ED
DNA Polymerase Synthesizes DNA Using a		Ar
Parental Strand as Template	203	
The Replication Fork Is Asymmetrical	204	tR
DNA Polymerase Is Self-correcting	205	

Detailed Contents	xv

57 57	Short Lengths of RNA Act as Primers for DNA Synthesis	206
58	Proteins at a Replication Fork Cooperate to Form a Replication Machine	207
	Telomerase Replicates the Ends of Eukaryotic Chromosomes	209
60	DNA REPAIR	211
61	DNA Damage Occurs Continually in Cells	212
68	Cells Possess a Variety of Mechanisms for Repairing DNA	213
69	A DNA Mismatch Repair System Removes Replication Errors That Escape Proofreading	214
71	Double-Strand DNA Breaks Require a Different	245
72	Strategy for Repair Homologous Recombination Can Flawlessly	215
73	Repair DNA Double-Strand Breaks	216
78	Consequences for a Cell or Organism	218
70	A Record of the Fidelity of DNA Replication and Repair Is Preserved in Genome Sequences	219
	Essential Concepts	220
79 80	Questions	221
00	Chapter 7 From DNA to Protein:	
	How Cells Read the Genome	223
82	FROM DNA TO RNA	224
83	Portions of DNA Sequence Are Transcribed into RNA	225
84	Transcription Produces RNA That Is Complementary to One Strand of DNA	226
85	Cells Produce Various Types of RNA	227
87	Signals in DNA Tell RNA Polymerase Where to Start and Finish Transcription	228
88	Initiation of Eukaryotic Gene Transcription Is a Complex Process	230
88	Eukaryotic RNA Polymerase Requires General	
	Transcription Factors	231
00	Eukaryotic mRNAs Are Processed in the Nucleus	232
90	In Eukaryotes, Protein-Coding Genes Are Interrupted by Noncoding Sequences	
92	Called Introns	233
93	Introns Are Removed From Pre-mRNAs by RNA Splicing	234
97	Mature Eukaryotic mRNAs Are Exported from the Nucleus	236
<mark>98</mark> 98	mRNA Molecules Are Eventually Degraded in the Cvtosol	237
99	The Earliest Cells May Have Had Introns in	227
99		220
	An mRNA Sequence is Decoded in Sets of	200
03	Three Nucleotides	239
05	tRNA Molecules Match Amino Acids to Codons in mRNA	242

xvi Detailed Contents

Specific Enzymes Couple tRNAs to the Correct Amino Acid	243	
The mRNA Message Is Decoded by Ribosomes	244	
The Ribosome Is a Ribozyme	246	
Specific Codons in mRNA Signal the Ribosome Where to Start and to Stop Protein Synthesis	247	
Proteins Are Made on Polyribosomes	249	
Inhibitors of Prokaryotic Protein Synthesis Are Used as Antibiotics	249	
Controlled Protein Breakdown Helps Regulate the Amount of Each Protein in a Cell	250	
There Are Many Steps Between DNA and Protein	252	
RNA AND THE ORIGINS OF LIFE	253	
Life Requires Autocatalysis	253	
RNA Can Both Store Information and Catalyze Chemical Reactions	254	
RNA Is Thought to Predate DNA in Evolution	255	
Essential Concepts	256	
Questions	250	
Questions	230	
Chapter 8 Control of Gene Expression	261	
AN OVERVIEW OF GENE EXPRESSION	262	
The Different Cell Types of a Multicellular Organism Contain the Same DNA	262	
Different Cell Types Produce Different Sets of Proteins	263	
A Cell Can Change the Expression of Its Genes in Response to External Signals	264	
Gene Expression Can Be Regulated at Various Steps from DNA to RNA to Protein	264	
HOW TRANSCRIPTIONAL SWITCHES WORK	265	
Transcription Regulators Bind to Regulatory DNA Sequences	265	
Transcriptional Switches Allow Cells to Respond		
to Changes in Their Environment Repressors Turn Genes Off and Activators	267	
Turn Them On	268	
Operon	268	
Eukaryotic Transcription Regulators Control Gene Expression from a Distance	270	
Eukaryotic Transcription Regulators Help Initiate Transcription by Recruiting Chromatin-Modifying Proteins	271	
THE MOLECULAR MECHANISMS THAT CREATE SPECIALIZED CELL TYPES	272	
Eukaryotic Genes Are Controlled by Combinations of Transcription Regulators	272	
The Expression of Different Genes Can Be Coordinated by a Single Protein	273	
Combinatorial Control Can Also Generate Different Cell Types	276	

Specialized Cell Types Can Be Experimentally Reprogrammed to Become Pluripotent Stem Cells	278
The Formation of an Entire Organ Can Be Triggered by a Single Transcription Regulator	278
Epigenetic Mechanisms Allow Differentiated Cells to Maintain Their Identity	279
POST-TRANSCRIPTIONAL CONTROLS	280
Each mRNA Controls Its Own Degradation and Translation	281
Regulatory RNAs Control the Expression of Thousands of Genes	282
MicroRNAs Direct the Destruction of Target mRNAs	282
Small Interfering RNAs Are Produced From Double-Stranded, Foreign RNAs to Protect Cells From Infections	283
Thousands of Long Noncoding RNAs May Also Regulate Mammalian Gene Activity	284
Essential Concepts	284
Questions	286
Chapter 9 How Genes and Genomes	
Evolve	289
GENERATING GENETIC VARIATION	290
In Sexually Reproducing Organisms, Only Changes to the Germ Line Are Passed On To Progeny	291
Point Mutations Are Caused by Failures of the Normal Mechanisms for Copying and Repairing DNA	293
Point Mutations Can Change the Regulation	270
of a Gene	294
DNA Duplications Give Rise to Families of Related Genes	294
The Evolution of the Globin Gene Family Shows How Gene Duplication and Divergence Can Produce New Proteins	296
Whole-Genome Duplications Have Shaped the Evolutionary History of Many Species	298
Novel Genes Can Be Created by Exon Shuffling	298
The Evolution of Genomes Has Been Profoundly Influenced by the Movement of Mobile Genetic Elements	299
Genes Can Be Exchanged Between Organisms by Horizontal Gene Transfer	300
RECONSTRUCTING LIFE'S FAMILY TREE	300
Genetic Changes That Provide a Selective Advantage Are Likely to Be Preserved	301
Closely Related Organisms Have Genomes That Are Similar in Organization As Well As Sequence	301
Functionally Important Genome Regions	
Show Up As Islands of Conserved DNA Sequence	302

Detailed Contents xvii

Genome Comparisons Show That Vertebrate Genomes Gain and Lose DNA Rapidly Sequence Conservation Allows Us to Trace Even the Most Distant Evolutionary	304
Relationships	305
TRANSPOSONS AND VIRUSES	307
Mobile Genetic Elements Encode the Components They Need for Movement	307
Families of Transposable Sequences	308
Viruses Can Move Between Cells and Organisms	309
Genetic Information	310
EXAMINING THE HUMAN GENOME	311
The Nucleotide Sequences of Human Genomes Show How Our Genes Are Arranged	313
Accelerated Changes in Conserved Genome Sequences Help Reveal What Makes Us Human	315
Genome Variation Contributes to Our	515
Individuality—But How?	318
Differences in Gene Regulation May Help	
Can Be So Different	319
Essential Concepts	321
Questions	322
Chapter 10 Modern Recombinant DNA Technology	325
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES	325 326
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites	325 326 327
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes	325 326 327 327
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes	 325 326 327 327 329
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to	 325 326 327 327 329 320
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences	 325 326 327 327 329 329
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA	 325 326 327 327 329 329 330
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs	 325 326 327 327 329 329 330 331
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors	 325 326 327 327 329 329 330 331 331
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors Recombinant DNA Can Be Copied Inside Bacterial Cells	 325 326 327 327 329 329 330 331 331 332
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors Recombinant DNA Can Be Copied Inside Bacterial Cells Genes Can Be Isolated from a DNA Library	 325 326 327 327 329 329 330 331 331 332 333
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors Recombinant DNA Can Be Copied Inside Bacterial Cells Genes Can Be Isolated from a DNA Library cDNA Libraries Represent the mRNAs Produced by Particular Cells	 325 326 327 327 329 329 329 330 331 331 332 333 334
Chapter 10 Modern Recombinant DNA Technology MANIPULATING AND ANALYZING DNA MOLECULES Restriction Nucleases Cut DNA Molecules at Specific Sites Gel Electrophoresis Separates DNA Fragments of Different Sizes Bands of DNA in a Gel Can Be Visualized Using Fluorescent Dyes or Radioisotopes Hybridization Provides a Sensitive Way to Detect Specific Nucleotide Sequences DNA CLONING IN BACTERIA DNA Cloning Begins with Genome Fragmentation and Production of Recombinant DNAs Recombinant DNA Can Be Inserted Into Plasmid Vectors Recombinant DNA Can Be Copied Inside Bacterial Cells Genes Can Be Isolated from a DNA Library cDNA Libraries Represent the mRNAs Produced by Particular Cells	 325 326 327 327 329 329 329 330 331 331 332 333 334 335

Multiple Cycles of Amplification <i>In Vitro</i> Generate Billions of Copies of the Desired	227
Nucleotide Sequence	33/
Applications	338
EXPLORING AND EXPLOITING GENE FUNCTION	339
Whole Genomes Can Be Sequenced Rapidly	341
Next-Generation Sequencing Techniques Make Genome Sequencing Faster and Cheaper	343
Comparative Genome Analyses Can Identify Genes and Predict Their Function	346
Analysis of mRNAs By Microarray or RNA-Seq Provides a Snapshot of Gene Expression	346
In Situ Hybridization Can Reveal When and Where a Gene Is Expressed	347
Reporter Genes Allow Specific Proteins to be Tracked in Living Cells	347
The Study of Mutants Can Help Reveal the Function of a Gene	348
RNA Interference (RNAi) Inhibits the Activity of Specific Genes	349
A Known Gene Can Be Deleted or Replaced With an Altered Version	350
Mutant Organisms Provide Useful Models of Human Disease	352
Transgenic Plants Are Important for Both Cell Biology and Agriculture	352
Even Rare Proteins Can Be Made in Large Amounts Using Cloned DNA	354
Essential Concepts	355
Questions	356
Chapter 11	
Membrane Structure	359
THE LIPID BILAYER	360
Membrane Lipids Form Bilayers in Water	361
The Lipid Bilayer Is a Flexible Two-dimensional Fluid	364
The Fluidity of a Lipid Bilayer Depends on Its Composition	365
Membrane Assembly Begins in the ER	366
Certain Phospholipids Are Confined to One Side of the Membrane	367
MEMBRANE PROTEINS	369
Membrane Proteins Associate with the Lipid Bilayer in Different Ways	370
A Polypeptide Chain Usually Crosses the Lipid Bilayer as an α Helix	371
Membrane Proteins Can Be Solubilized in Detergents	372
We Know the Complete Structure of Relatively Few Membrane Proteins	373
The Plasma Membrane Is Reinforced by the Underlying Cell Cortex	374

A Cell Can Restrict the Movement of Its	
Membrane Proteins	376
The Cell Surface Is Coated with Carbohydrate	377
Essential Concepts	380
Questions	381
Chapter 12	
Transport Across Cell Membranes	383
PRINCIPLES OF TRANSMEMBRANE	
TRANSPORT	384
Lipid Bilayers Are Impermeable to lons and Most Uncharged Polar Molecules	384
The Ion Concentrations Inside a Cell Are Very Different from Those Outside	385
Differences in the Concentration of Inorganic Ions Across a Cell Membrane Create a Membrane Potential	385
Cells Contain Two Classes of Membrane	
Transport Proteins: Transporters and Channels	386
Solutes Cross Membranes by Either Passive	386
Both the Concentration Gradient and Membrane	000
Potential Influence the Passive Transport of	007
Charged Solutes	387
Down Its Concentration Gradient—a Process	
Called Osmosis	388
TRANSPORTERS AND THEIR FUNCTIONS	389
Passive Transporters Move a Solute Along Its Electrochemical Gradient	390
Pumps Actively Transport a Solute Against Its Electrochemical Gradient	390
The Na ⁺ Pump in Animal Cells Uses Energy	
in K ⁺	391
The Na ⁺ Pump Generates a Steep	
Concentration Gradient of Na ⁺ Across the Plasma Membrane	392
Ca ²⁺ Pumps Keep the Cytosolic Ca ²⁺	202
Coupled Pumps Exploit Solute Gradients to	372
Mediate Active Transport	393
The Electrochemical Na ⁺ Gradient Drives	
Coupled Pumps in the Plasma Membrane	393
Electrochemical H ⁺ Gradients Drive Coupled	070
Pumps in Plants, Fungi, and Bacteria	395
ION CHANNELS AND THE MEMBRANE POTENTIAL	396
Ion Channels Are Ion-selective and Gated	397
Membrane Potential Is Governed by the Permeability of a Membrane to Specific Ions	398
Ion Channels Randomly Snap Between Open and Closed States	400
Different Types of Stimuli Influence the	101
Opening and Closing of Ion Channels	401

Voltage-gated Ion Channels Respond to the Membrane Potential	403
ION CHANNELS AND NERVE CELL SIGNALING	403
Action Potentials Allow Rapid Long-Distance Communication Along Axons	404
Action Potentials Are Mediated by Voltage- gated Cation Channels	405
Voltage-gated Ca ²⁺ Channels in Nerve Terminals Convert an Electrical Signal into a Chemical Signal	409
Transmitter-gated Ion Channels in the Postsynaptic Membrane Convert the Chemical Signal Back into an Electrical Signal	410
Neurotransmitters Can Be Excitatory or Inhibitory	411
Most Psychoactive Drugs Affect Synaptic Signaling by Binding to Neurotransmitter Receptors	413
The Complexity of Synaptic Signaling Enables Us to Think, Act, Learn, and Remember	413
Optogenetics Uses Light-gated Ion Channels to Transiently Activate or Inactivate Neurons in Living Animals	414
Essential Concepts	415
Questions	417
Chapter 13	
How Cells Obtain Energy From Food	419
How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS	419 420
How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages	419 420 421
How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar	419 420 421 422
How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH	419 420 421 422 423
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen 	 419 420 421 422 423 425
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers 	 419 420 421 422 423 425 426
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix 	 419 420 421 422 423 425 426 430
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO2 	 419 420 421 422 423 425 426 430 430
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle 	 419 420 421 422 423 425 426 430 433
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle Electron Transport Drives the Synthesis of the Majority of the ATP in Most Cells 	 419 420 421 422 423 425 426 430 430 433 438
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle Electron Transport Drives the Synthesis of the Majority of the ATP in Most Cells REGULATION OF METABOLISM 	 419 420 421 422 423 425 426 430 430 433 438 439
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO2 Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle Electron Transport Drives the Synthesis of the Majority of the ATP in Most Cells REGULATION OF METABOLISM Catabolic and Anabolic Reactions Are Organized and Regulated 	419 420 421 422 423 425 426 430 430 430 433 438 439 440
 How Cells Obtain Energy From Food THE BREAKDOWN AND UTILIZATION OF SUGARS AND FATS Food Molecules Are Broken Down in Three Stages Glycolysis Extracts Energy from the Splitting of Sugar Glycolysis Produces Both ATP and NADH Fermentations Can Produce ATP in the Absence of Oxygen Glycolytic Enzymes Couple Oxidation to Energy Storage in Activated Carriers Several Organic Molecules Are Converted to Acetyl CoA in the Mitochondrial Matrix The Citric Acid Cycle Generates NADH by Oxidizing Acetyl Groups to CO₂ Many Biosynthetic Pathways Begin with Glycolysis or the Citric Acid Cycle Electron Transport Drives the Synthesis of the Majority of the ATP in Most Cells REGULATION OF METABOLISM Catabolic and Anabolic Reactions Are Organized and Regulated Feedback Regulation Allows Cells to Switch from Glucose Breakdown to Glucose Synthesis 	419 420 421 422 423 425 426 430 430 430 433 438 439 440

	Essential Concepts	445
	Questions	446
	Chapter 14	
	Energy Generation in Mitochondria	
	and Chloroplasts	447
,	Cells Obtain Most of Their Energy by a	
	Membrane-based Mechanism	448
	Chemiosmotic Coupling is an Ancient Process,	
	Preserved in Present-Day Cells	449
1	MITOCHONDRIA AND OXIDATIVE	
	PHOSPHORYLATION	451
	Nitochondria Can Change Their Shape,	454
	Location, and Number to Suit a Cell's Needs	451
1	an Inner Membrane, and Two Internal	
	Compartments	452
1	The Citric Acid Cycle Generates the High-Energy	
	Electrons Required for ATP Production	453
-	The Movement of Electrons is Coupled to the	
	Pumping of Protons	454
1	Protons Are Pumped Across the Inner	
	Flectron-Transport Chain	155
1	Proton Pumping Produces a Steen	455
	Electrochemical Proton Gradient Across the	
	Inner Mitochondrial Membrane	456
/	TP Synthase Uses the Energy Stored in the	
	Electrochemical Proton Gradient to Produce	457
(Coupled Transport Across the Inpor	437
	Mitochondrial Membrane Is Also Driven by	
	the Electrochemical Proton Gradient	459
	he Rapid Conversion of ADP to ATP in	
	Mitochondria Maintains a High ATP/ADP	450
,		459
(Leli Respiration is Amazingly Efficient	460
1		A.(A
	RANSFORT AND PROTON POMPING	401
ſ	Electrons	461
٦	he Redox Potential Is a Measure of Electron	101
	Affinities	464
E	lectron Transfers Release Large Amounts	
	of Energy	465
ſ	Aetals Tightly Bound to Proteins Form Versatile	
	Electron Carriers	465
(ytochrome c Oxidase Catalyzes the Reduction	160
		400
-	HLOROPLASTS AND PHOTOSYNTHESIS	469
C	an Extra Compartment—the Thylakoid	170
F	hotosynthesis Generates_Then Consumer	470
'	ATP and NADPH	471
(Chlorophyll Molecules Absorb the Energy of	
	Sunlight	472

Dotailad	Contonto
Detalled	Contents

xix

Excited Chlorophyll Molecules Funnel Energy into a Reaction Center	472
A Pair of Photosystems Cooperate to Generate Both ATP and NADPH	473
Oxygen Is Generated by a Water-Splitting Complex Associated with Photosystem II	474
The Special Pair in Photosystem I Receives its Electrons from Photosystem II	475
Carbon Fixation Uses ATP and NADPH to Convert CO ₂ into Sugars	476
Sugars Generated by Carbon Fixation Can Be Stored As Starch or Consumed to Produce ATP	478
THE EVOLUTION OF ENERGY-GENERATING	170
Oxidative Phosphorylation Evolved in Stages	479
Photosynthetic Bacteria Made Even Fewer Demands on Their Environment	480
The Lifestyle of <i>Methanococcus</i> Suggests That	400
Chemiosmotic Coupling Is an Ancient Process	481
Essential Concepts	482
Questions	483
Chapter 15	
Intracellular Compartments and	
Protein Transport	487
MEMBRANE-ENCLOSED ORGANELLES	488
Eukaryotic Cells Contain a Basic Set of Membrane-enclosed Organelles	488
Membrane-enclosed Organelles Evolved in Different Ways	491
PROTEIN SORTING	492
Proteins Are Transported into Organelles by Three Mechanisms	492
Signal Sequences Direct Proteins to the Correct	494
Proteins Enter the Nucleus Through Nuclear	7/7
Pores	495
Proteins Unfold to Enter Mitochondria and Chloroplasts	497
Proteins Enter Peroxisomes from Both the Cytosol and the Endoplasmic Reticulum	498
Proteins Enter the Endoplasmic Reticulum While Being Synthesized	498
Soluble Proteins Made on the ER Are Released	
	499
Start and Stop Signals Determine the Arrangement of a Transmembrane Protein in the Lipid Bilayer	499 501
Start and Stop Signals Determine the Arrangement of a Transmembrane Protein in the Lipid Bilayer VESICULAR TRANSPORT	499 501 503
Start and Stop Signals Determine the Arrangement of a Transmembrane Protein in the Lipid Bilayer VESICULAR TRANSPORT Transport Vesicles Carry Soluble Proteins and Membrane Between Compartments	499 501 503 503

Vesicle Docking Depends on Tethers and	505
SIVARES	505
SECRETORY PATHWAYS	507
Exit from the ER Is Controlled to Ensure Protein Quality	509
The Size of the ER Is Controlled by the Demand for Protein	509
Proteins Are Further Modified and Sorted in the Golgi Apparatus	510
Secretory Proteins Are Released from the Cell by Exocytosis	511
ENDOCYTIC PATHWAYS	515
Specialized Phagocytic Cells Ingest Large Particles	515
Fluid and Macromolecules Are Taken Up by Pinocytosis	516
Receptor-mediated Endocytosis Provides a Specific Route into Animal Cells	517
Endocytosed Macromolecules Are Sorted in Endosomes	518
Lysosomes Are the Principal Sites of Intracellular Digestion	519
Essential Concepts	520
Questions	522
Chapter 16	
Chapter 16 Cell Signaling	525
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING	525 526
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range	525 526 526
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of	525 526 526
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State	525 526 528
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow	525 526 528 531
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors	525 526 526 528 531 531
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma	525 526 528 531 531
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly	525 526 528 531 531 533
 Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways 	525 526 528 531 531 533 533
 Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways Some Intracellular Signaling Proteins Act as Molecular Switches 	525 526 528 531 531 533 533 534 535
 Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways Some Intracellular Signaling Proteins Act as Molecular Switches Cell-Surface Receptors Fall into Three Main Classes 	525 526 528 531 531 533 534 535 537
 Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways Some Intracellular Signaling Proteins Act as Molecular Switches Cell-Surface Receptors Fall into Three Main Classes Ion-channel-coupled Receptors Convert Chemical Signals into Electrical Ones 	525 526 528 531 531 533 534 535 535 537 538
 Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways Some Intracellular Signaling Proteins Act as Molecular Switches Cell-Surface Receptors Fall into Three Main Classes Ion-channel-coupled Receptors Convert Chemical Signals into Electrical Ones G-PROTEIN-COUPLED RECEPTORS 	525 526 528 531 531 533 533 533 535 537 538 539
 Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways Some Intracellular Signaling Proteins Act as Molecular Switches Cell-Surface Receptors Fall into Three Main Classes Ion-channel-coupled Receptors Convert Chemical Signals into Electrical Ones G-PROTEIN-COUPLED RECEPTORS Stimulation of GPCRs Activates G-Protein Subunits 	525 526 528 531 531 533 534 535 537 538 539 540
Chapter 16 Cell Signaling GENERAL PRINCIPLES OF CELL SIGNALING Signals Can Act over a Long or Short Range Each Cell Responds to a Limited Set of Extracellular Signals, Depending on Its History and Its Current State A Cell's Response to a Signal Can Be Fast or Slow Some Hormones Cross the Plasma Membrane and Bind to Intracellular Receptors Some Dissolved Gases Cross the Plasma Membrane and Activate Intracellular Enzymes Directly Cell-Surface Receptors Relay Extracellular Signals via Intracellular Signaling Pathways Some Intracellular Signaling Proteins Act as Molecular Switches Cell-Surface Receptors Fall into Three Main Classes Ion-channel–coupled Receptors Convert Chemical Signals into Electrical Ones G-PROTEIN-COUPLED RECEPTORS Stimulation of GPCRs Activates G-Protein Subunits Some Bacterial Toxins Cause Disease by Altering the Activity of G Proteins	525 526 528 531 531 533 533 534 535 537 538 539 540 541

Many G Proteins Activate Membrane-bound Enzymes that Produce Small Messenger Molecules	543
The Cyclic AMP Signaling Pathway Can Activate Enzymes and Turn On Genes	544
The Inositol Phospholipid Pathway Triggers a Rise in Intracellular Ca ²⁺	546
A Ca ²⁺ Signal Triggers Many Biological Processes	548
GPCR-Triggered Intracellular Signaling Cascades Can Achieve Astonishing Speed, Sensitivity, and Adaptability	549
ENZYME-COUPLED RECEPTORS	551
Activated RTKs Recruit a Complex of Intracellular Signaling Proteins	552
Most RTKs Activate the Monomeric GTPase Ras	553
RTKs Activate PI 3-Kinase to Produce Lipid Docking Sites in the Plasma Membrane	555
Some Receptors Activate a Fast Track to the Nucleus	558
Independently in Plants and Animals	559
to Control Complex Cell Behaviors	560
Essential Concepts	561
Questions	563
Chapter 17	
Chapter 17 Cytoskeleton	565
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS	565 567
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike	565 567 567
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress	565 567 567 569
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments	565 567 569 570
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES	565 567 569 570 571
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends	565 567 569 570 571 572
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells	565 567 569 570 571 572 573
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability	565 567 569 570 571 572 573 574
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis	565 567 569 570 571 572 573 574 574
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs	565 567 569 570 571 572 573 574 574 575
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior	565 567 569 570 571 572 573 574 574 574 575 576
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport	565 567 569 570 571 572 573 574 574 575 576 577
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport Microtubules and Motor Proteins Position Organelles in the Cytoplasm	565 567 569 570 571 572 573 574 574 574 575 576 577 578
 Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport Microtubules and Motor Proteins Position Organelles in the Cytoplasm Cilia and Flagella Contain Stable Microtubules Moved by Dynein 	565 567 569 570 571 572 573 574 574 574 575 576 577 578 578
Chapter 17 Cytoskeleton INTERMEDIATE FILAMENTS Intermediate Filaments Are Strong and Ropelike Intermediate Filaments Strengthen Cells Against Mechanical Stress The Nuclear Envelope Is Supported by a Meshwork of Intermediate Filaments MICROTUBULES Microtubules Are Hollow Tubes with Structurally Distinct Ends The Centrosome Is the Major Microtubule- organizing Center in Animal Cells Growing Microtubules Display Dynamic Instability Dynamic Instability is Driven by GTP Hydrolysis Microtubule Dynamics Can be Modified by Drugs Microtubules Organize the Cell Interior Motor Proteins Drive Intracellular Transport Microtubules and Motor Proteins Position Organelles in the Cytoplasm Cilia and Flagella Contain Stable Microtubules Moved by Dynein ACTIN FILAMENTS	565 567 569 570 571 572 573 574 574 574 575 576 577 578 578 579 583

Actin and Tubulin Polymerize by Similar Mechanisms	585
Many Proteins Bind to Actin and Modify Its Properties	586
A Cortex Rich in Actin Filaments Underlies the	E00
Cell Crawling Depends on Cortical Actin	588
Actin Associates with Myosin to Form	591
Extracellular Signals Can Alter the Arrangement	571
of Actin Filaments	591
MUSCLE CONTRACTION	592
Filaments of Actin and Myosin	593
Actin Filaments Slide Against Myosin Filaments During Muscle Contraction	594
Muscle Contraction Is Triggered by a Sudden Rise in Cytosolic Ca ²⁺	595
Different Types of Muscle Cells Perform	
Different Functions	598
Essential Concepts	599
Questions	600
Chapter 18	
The Cell-Division Cycle	603
OVERVIEW OF THE CELL CYCLE	604
The Eukaryotic Cell Cycle Usually Includes Four Phases	605
A Cell-Cycle Control System Triggers the Major	606
Cell-Cycle Control is Similar in All Eukaryotes	607
THE CELL-CYCLE CONTROL SYSTEM	607
The Cell-Cycle Control System Depends on Cyclically Activated Protein Kinases called	
Cdks	607
Different Cyclin–Cdk Complexes Trigger Different Steps in the Cell Cycle	608
Cyclin Concentrations are Regulated by Transcription and by Proteolysis	611
The Activity of Cyclin–Cdk Complexes Depends	011
on Phosphorylation and Dephosphorylation	612
Proteins	612
The Cell-Cycle Control System Can Pause the Cycle in Various Ways	612
G ₁ PHASE	613
Cdks are Stably Inactivated in G ₁	614
Mitogens Promote the Production of the Cyclins that Stimulate Cell Division	614
DNA Damage Can Temporarily Halt Progression Through G1	615
Cells Can Delay Division for Prolonged Periods	
by Entering Specialized Nondividing States	615
SPHASE	616

Detailed Contents

xxi

S-Cdk Initiates DNA Replication and Blocks	
Re-Replication	617
Incomplete Replication Can Arrest the Cell	
Cycle in G ₂	618
M PHASE	618
M-Cdk Drives Entry Into M Phase and Mitosis	618
Cohesins and Condensins Help Configure	
Duplicated Chromosomes for Separation	619
Different Cytoskeletal Assemblies Carry	
Out Mitosis and Cytokinesis	619
M Phase Occurs in Stages	620
MITOSIS	621
Centrosomes Duplicate To Help Form the	
Two Poles of the Mitotic Spindle	621
The Mitotic Spindle Starts to Assemble in	
Prophase	624
Chromosomes Attach to the Mitotic Spindle	(04
at Prometaphase	624
Chromosomes Assist in the Assembly of the	626
Chromosomes Line Line at the Spindle Equator	020
at Metaphase	626
Proteolysis Triggers Sister-Chromatid Separation	
at Anaphase	627
Chromosomes Segregate During Anaphase	627
An Unattached Chromosome Will Prevent	
Sister-Chromatid Separation	629
The Nuclear Envelope Re-forms at Telophase	629
CYTOKINESIS	630
The Mitotic Spindle Determines the Plane of Cytoplasmic Cleavage	630
The Contractile Ring of Animal Cells Is Made	
of Actin and Myosin Filaments	631
Cytokinesis in Plant Cells Involves the	
Formation of a New Cell Wall	632
Membrane-Enclosed Organelles Must Be	
Distributed to Daughter Cells When a	632
	(22
CONTROL OF CELL NUMBERS AND CELL SIZE	633
Apoptosis Helps Regulate Animal Cell Numbers	634
Apoptosis is Mediated by an Intracellular Proteolytic Cascade	634
The Intrinsic Apoptotic Death Program Is	001
Regulated by the Bcl2 Family of Intracellular	
Proteins	636
Extracellular Signals Can Also Induce Apoptosis	637
Animal Cells Require Extracellular Signals	
to Survive, Grow, and Divide	637
Survival Factors Suppress Apoptosis	638
Mitogens Stimulate Cell Division by Promoting	620
Growth Eastors Stimulate Colle to Grow	630
Some Extracollular Signal Protoing Inhibit	037
Cell Survival, Division, or Growth	640

Essential Concepts	641
Questions	643
Chapter 19 Sexual Reproduction and the Power of Genetics	645
THE BENEFITS OF SEX	646
Sexual Reproduction Involves Both Diploid and Haploid Cells	646
Sexual Reproduction Generates Genetic Diversity	647
Sexual Reproduction Gives Organisms a Competitive Advantage in a Changing Environment	648
MEIOSIS AND FERTILIZATION	648
Meiosis Involves One Round of DNA Replication Followed by Two Rounds of Cell Division	649
Meiosis Requires the Pairing of Duplicated Homologous Chromosomes	651
Maternal and Paternal Chromosomes in Each Bivalent	652
Chromosome Pairing and Crossing-Over Ensure the Proper Segregation of Homologs	653
Daughter Cells	654
Information	654
Meiosis Is Not Flawless	656
Fertilization Reconstitutes a Complete Diploid Genome	657
MENDEL AND THE LAWS OF INHERITANCE	657
Mendel Studied Traits That Are Inherited in a Discrete Fashion	658
Mendel Disproved the Alternative Theories of Inheritance	658
Mendel's Experiments Revealed the Existence of Dominant and Recessive Alleles	659
Each Gamete Carries a Single Allele for Each Character	660
Sexually Reproducing Organisms	661
Independently	662
Underlies Mendel's Laws of Inheritance	664
Segregate Independently by Crossing-Over	664
Function or a Gain of Function	665
Recessive Mutations	666
GENETICS AS AN EXPERIMENTAL TOOL	667
Random Mutagenesis	667

641	Genetic Screens Identify Mutants Deficient	668
643	Conditional Mutants Permit the Study of Lethal	670
	Mutations	070
645	Mutations Are in the Same Gene	671
646	Rapid and Cheap DNA Sequencing Has Revolutionized Human Genetic Studies	672
646	Linked Blocks of Polymorphisms Have Been Passed Down from Our Ancestors	672
647	Our Genome Sequences Provide Clues to our Evolutionary History	673
410	Polymorphisms Can Aid the Search for Mutations Associated with Disease	674
648	Genomics Is Accelerating the Discovery of Rare Mutations that Predispose Us to	
	Serious Disease	675
649	Essential Concepts	678
651	Questions	679
	Chapter 20	
652	Cell Communities: Tissues, Stem Cells,	
002	and Cancer	683
653	EXTRACELLULAR MATRIX AND CONNECTIVE	684
654	Plant Cells Have Tough External Walls	685
	Cellulose Microfibrils Give the Plant Cell Wall	
654	Its Tensile Strength	686
020	Animal Connective Tissues Consist Largely of Extracellular Matrix	688
657	Collagen Provides Tensile Strength in Animal Connective Tissues	688
037	Cells Organize the Collagen That They Secrete	690
658	Integrins Couple the Matrix Outside a Cell to the Cytoskeleton Inside It	691
658	Gels of Polysaccharides and Proteins Fill Spaces and Resist Compression	692
659	EPITHELIAL SHEETS AND CELL JUNCTIONS	694
	Epithelial Sheets Are Polarized and Rest on a	
660	Basal Lamina	695
661	proof and Separate Its Apical and Basal Surfaces	696
662	Cytoskeleton-linked Junctions Bind Epithelial Cells Robustly to One Another and to the	
664	Basal Lamina	697
664	Gap Junctions Allow Cytosolic Inorganic Ions and Small Molecules to Pass from Cell to Cell	700
	TISSUE MAINTENANCE AND RENEWAL	702
665	Tissues Are Organized Mixtures of Many Cell Types	703
000	Different Tissues Are Renewed at Different	705
66/	Kates Stom Calls Ganarata a Continuous Supply	105
667	of Terminally Differentiated Cells	705

Specific Signals Maintain Stem-Cell Populations	707
Stem Cells Can Be Used to Repair Lost or Damaged Tissues	708
Therapeutic Cloning and Reproductive Cloning Are Very Different Enterprises	710
Induced Pluripotent Stem Cells Provide a Convenient Source of Human ES-like Cells	711
CANCER	712
Cancer Cells Proliferate, Invade, and Metastasize	712
Epidemiological Studies Identify Preventable Causes of Cancer	713
Cancers Develop by an Accumulation of Mutations	714
Cancer Cells Evolve, Giving Them an Increasingly Competitive Advantage	715
Two Main Classes of Genes Are Critical for Cancer: Oncogenes and Tumor Suppressor	
Genes	717
Cancer-causing Mutations Cluster in a Few Fundamental Pathways	719
Colorectal Cancer Illustrates How Loss of a Tumor Suppressor Gene Can Lead to Cancer	719
An Understanding of Cancer Cell Biology Opens the Way to New Treatments	720
Essential Concepts	724
Questions	726
	0