CONTENTS

	Preface to the first edition Preface to the second edition Plan of the second edition New to this edition Recommended reading Introduction to genomics on the web Acknowledgements	vii ix x xii xiii xiii xiii
	Sections marked with * are clinically related	
1	Introduction to Genomics	3
	The human genome	4
	Phenotype = genotype + environment + life history + epigenetics	4
	Contents of the human genome	6
	Genes that encode the proteome	8
	The leap from the one-dimensional world of sequences to the three-dimensional world we inhabit	9
	Varieties of genome organization Chromosomes, organelles, and plasmids Genes Dynamic components of genomes	10 10 13 15
	Genome sequencing projects	17
	Genome projects and the development of our current information library	18
	Variations within and between populations	20
	Cancer genome sequencing*	20
	Human genome sequencing	20
	The human genome and medicine*	21
	Prevention of disease	21
	Detection and precise diagnosis Discovery and implementation of effective treatment	22 22
	Health care delivery	23
	The evolution and development of databases	24
	Databank evo-devo	25
	Genome browsers	25
	Protein evolution: divergence of sequences and structures within	
	and between species	30
	Different globins diverged from a common ancestor	30
	Ethical, legal, and social issues (*, partly)	32
	Databases containing human DNA sequence information	32
	Recommended Reading	35
	Exercises, Problems, and Weblems	36

2	Genomes are the Hub of Biology	41
	Individuals, populations, the biosphere: past, present, and future	42
	The central dogma, and peripheral ones	43
	Expression patterns	43
	Regulation of gene expression	44
	Proteomics	48
	Genomics and developmental biology Genes and minds: neurogenomics	48 50
	Populations	50 52
	Single-nucleotide polymorphisms (SNPs) and haplotypes	52
	A clinically important haplotype: the major histocompatibility complex*	55
	Mutations and disease*	57
	Genetic diseases – some examples of their causes and treatment*	59
	Haemoglobinopathies – molecular diseases caused by abnormal	
	haemoglobins	59
	Phenylketonuria Alzheimer's disease	60 61
	SNPs and cancer	62
	Species	66
	The biosphere	67
	Extinctions	67
	Recommended Reading	70
	Exercises, Problems, and Weblems	71
-		
3	Mapping, Sequencing, Annotation, and Databases	79
	Classical genetics as background	80
	What is a gene?	81
	Maps and tour guides	81
	Genetic maps	82
	Linkage	82
	Linkage disequilibrium Chromosome banding pattern maps	83 84
	High-resolution maps, based directly on DNA sequences	88
	Restriction maps	89
	Discovery of the structure of DNA	90
	DNA sequencing	93
	Frederick Sanger and the development of DNA sequencing	94
	The Maxam–Gilbert chemical cleavage method Automated DNA sequencing	97 97
	Organizing a large-scale sequencing project	98
	Bring on the clones: hierarchical – or 'BAC-to-BAC' – genome sequencing	98
	Whole-genome shotgun sequencing	99
	High-throughput sequencing	100
	Life in the fast lanes	103
	Databanks in molecular biology	104
	Nucleic acid sequence databases	106

xvi

Contents xvii

	Protein sequence databases	106
	Databases of genetic diseases – OMIM and OMIA*	106
	Databases of structures	107
	Classifications of protein structures	107
	Specialized or 'boutique' databases	107
	Expression and proteomics databases	107
	Databases of metabolic pathways Bibliographic databases	109 109
	Surveys of molecular biology databases and servers	109
	Recommended Reading	110
	Exercises, Problems, and Weblems	110
	Exercises, Froblems, and Weblems	110
4	Comparative Genomics	115
	Introduction	116
	Unity and diversity of life	116
	Taxonomy based on sequences	117
	Sizes and organization of genomes	121
	Genome sizes	121
	Viral genomes	124
	Recombinant viruses	124
	Influenza: a past and current threat*	126
	Genome organization in prokaryotes	129
	Replication and transcription	129
	Gene transfer	130
	Genome organization in eukaryotes	132
	Photosynthetic sea slugs: endosymbiosis of chloroplasts	132
	How genomes differ	133
	Variation at the level of individual nucleotides	133
	Duplications	134
	Comparisons at the chromosome level: synteny	143
	What makes us human?	143
	Comparative genomics	143
	Combining the approaches: the FOXP2 gene	144
	Genomes of chimpanzees and humans	144
	Genomes of mice and rats	145
	Model organisms for study of human diseases*	146
	The genome of Caenorhabditis elegans	147
	The genome of <i>Drosophila melanogaster</i>	147
	Homologous genes in humans, worms, and flies	148
	The ENCODE project	151
	The modENCODE project	153
	Recommended Reading	154
	Exercises, Problems, and Weblems	155

5	Evolution and Genomic Change	161
	Evolution is exploration	162
	Biological systematics	164
	Biological nomenclature Measurement of biological similarities and differences	164 165
	Homologues and families	166
	Pattern matching – the basic tool of bioinformatics	167
	Sequence alignment Defining the optimum alignment Approximate methods for quick screening of databases Pattern matching in three-dimensional structures	167 171 173 176
	Evolution of protein sequences, structures, and functions	176
	The effects of single-site mutations Evolution of protein structure and function	177 178
	Phylogeny	181
	Phylogenetic trees Clustering methods Cladistic methods The problem of varying rates of evolution Bayesian methods	183 184 185 185 185
	Short-circuiting evolution: genetic engineering	186
	Recommended Reading	187
	Exercises, Problems, and Weblems	188
6	Genomes of Prokaryotes	191
	Evolution and phylogenetic relationships in prokaryotes	192
	Major types of prokaryotes Do we know the root of the tree of life?	192 194
	Archaea	195
	The genome of <i>Methanococcus jannaschii</i> Life at extreme temperatures Comparative genomics of hyperthermophilic archaea:	197 197
	Thermococcus kodakarensis and Pyrococci	201
	Bacteria	204
	Genomes of pathogenic bacteria* Genomics and the development of vaccines*	204 206
	Metagenomics: the collection of genomes in a coherent environmental sample	208
	Marine cyanobacteria – an in-depth study	208
	Recommended Reading	212
	Exercises, Problems, and Weblems	212

Contents

7	Genomes of Eukaryotes		215
	The origin and evolution of eukaryotes		216
	Evolution and phylogenetic relationships in eukaryotes		216
	The yeast genome		216
	The evolution of plants		218
	The genome of the sea squirt (<i>Ciona intestinalis</i>) The genome of the pufferfish (<i>Tetraodon nigroviridis</i>)		220 221
	The chicken genome		224
	The platypus genome (Ornithorhynchus anatinus)		225
	The dog genome		226
	Palaeosequencing – ancient DNA		229
	Recovery of DNA from ancient samples	3	229
	DNA from extinct birds		230
	The moas of New Zealand	:	230
	The dodo and the solitaire		232
	High-throughput sequencing of mammoth DNA	:	232
	The mammoth nuclear genome		233
	The phylogeny of elephants		233
	Recommended Reading		234
	Exercises, Problems, and Weblems		235
8	Genomics and Human Biology	2	237
	Genomics in personal identification		238
	Mitochondrial DNA		239
	Gender identification	:	240
	Physical characteristics	1	241
	The domestication of crops		241
	Maize (Zea mays)		243
	Rice (Oryza sativa) Chocolate (Theobroma cacao)		245
	The T. cacao genome		245 247
	Genomics in anthropology		250
	The Neanderthal genome		250
	Ancient populations and migrations		251
	Genomics and language		258
	Recommended Reading		260
	Exercises, Problems, and Weblems	1	261
9	Microarrays and Transcriptomics	2	65
	Introduction	2	266
	Applications of DNA microarrays	2	268
	Analysis of microarray data	2	269

xix

~

Contents

	Expression patterns in different physiological states	272
	The diauxic shift in Saccharomyces cerevisiae	272
	Sleep in rats and fruit flies	274
	Expression pattern changes in development	276
	Variation of expression patterns during the life cycle of Drosophila melanogaster	276
	Flower formation in roses	278
	Expression patterns in learning and memory: long-term potentiation	282
	Conserved clusters of co-expressing genes	284
	Evolutionary changes in expression patterns	285
	Applications of microarrays in medicine*	287
	Development of antibiotic resistance in bacteria Childhood leukaemias	287 290
	Whole transcriptome shotgun sequencing: RNA-seq	292
	Recommended Reading	293
	Exercises, Problems, and Weblems	293
10	Proteomics	297
	Introduction	298
	Protein nature and types	298
	Protein structure	299
	The chemical structure of proteins	299
	Conformation of the polypeptide chain Protein folding patterns	300 301
	Post-translational modifications	304
	Why is there a common genetic code with 20 canonical amino acids?	304
	Separation and analysis of proteins Polyacrylamide gel electrophoresis (PAGE)	307 307
	Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)	307
	Mass spectrometry	308
	Classification of protein structures	310
	SCOP	312
	Changes in folding patterns in protein evolution	313
	Many proteins change conformation as part of the mechanism of their function	314
	Conformational change during enzymatic catalysis	314
	Motor proteins	316
	Allosteric regulation of protein function Conformational states of serine protease inhibitors (serpins)	318 320
	Protein structure prediction and modelling	322
	Homology modelling	323
	Available protocols for protein structure prediction	327
	Structural genomics	328

Contents

Directed evolution and protein design	328
Directed evolution of subtilisin E	329
Enzyme design	330
Protein complexes and aggregates	330
Protein aggregation diseases*	331
Properties of protein–protein complexes	332
Multisubunit proteins	335
Recommended Reading	336
Exercises, Problems, and Weblems	336
Systems Biology	341
Introduction to systems biology	342
Two parallel networks: physical and logical	342
Statics and dynamics of networks	343
Pictures of networks as graphs	344
Trees	345
Sources of ideas for systems biology	346
Complexity of sequences	346
Shannon's definition of entropy	347
Randomness of sequences	348
Static and dynamic complexity	349
Computational complexity	350
The metabolome	351
Classification and assignment of protein function	351
Metabolic networks	354
Databases of metabolic pathways	354
Methionine synthesis in <i>Escherichia coli</i> The Kyoto Encyclopedia of Genes and Genomes (KEGG)	355 356
Evolution and phylogeny of metabolic pathways	357
Carbohydrate metabolism in archaea	358
Reconstruction of metabolic networks	360
Regulatory networks	361
Signal transduction and transcriptional control	362
Structures of regulatory networks	362
Dynamics, stability, and robustness	363
Robustness through redundancy	363
Dynamic modelling	365
Protein interaction networks	366
Structural biology of regulatory networks	370
Protein-DNA interactions	373
Structural themes in protein–DNA binding and sequence	
recognition	373
An album of transcription regulators	374

11

xxi

¥

376
376 380
382
383
384
385
389 390