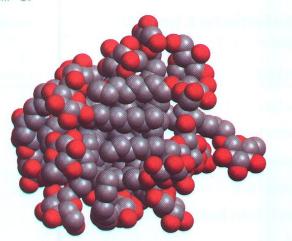


PART I INTRODUCTION

CHAPTER 1 Introduction to the Chemistry of Life 2

- 1. The Origin of Life з
 - A. The Prebiotic World 3
 - B. Chemical Evolution 4
- 2. Cellular Architecture 6
 - A. The Evolution of Cells 6
 - B. Prokaryotes and Eukaryotes 8
- 3. Organismal Evolution 9
 - A. Taxonomy and Phylogeny 9
 - B. The Origins of Complexity 10
 - C. How Do Organisms Evolve? 11
- 4. Thermodynamics 12
 - A. The First Law of Thermodynamics: Energy Is Conserved 12
 - B. The Second Law of Thermodynamics: Entropy Tends to Increase 13
 - C. Free Energy 14
 - D. Chemical Equilibria and the Standard State 15
 - E. Life Obeys the Laws of Thermodynamics 17


Box 1-1 Perspectives in Biochemistry: Biochemical Conventions 13

CHAPTER 2 Water 22

- 1. Physical Properties of Water 23
 - A. Structure of Water 23
 - B. Water as a Solvent 26
 - C. The Hydrophobic Effect 27
 - D. Osmosis and Diffusion 29
- 2. Chemical Properties of Water 31
 - A. Ionization of Water 31
 - В. Acid-Base Chemistry зз
 - C. Buffers 35

Box 2-1 Perspectives in Biochemistry: Diffusion Rates and the Sizes of Organisms 31

Box 2-2 Biochemistry in Health and Disease: The Blood Buffering System 37

PART II BIOMOLECULES

CHAPTER 3 Nucleotides, Nucleic Acids, and Genetic

Information 40

- 1. Nucleotides 41
- 2. Introduction to Nucleic Acid structure 44
 - A. The Base Composition of DNA 45
 - B. The Double Helix 46
 - C. Single-Stranded Nucleic Acids 49
- 3. Overview of Nucleic Acid Function 49
 - A. DNA Carries Genetic Information 50
 - B. Genes Direct Protein Synthesis 51
- 4. Nucleic Acid Sequencing 52
 - A. Restriction Endonucleases 52
 - B. Electrophoresis and Restriction Mapping 54
 - C. The Chain-Terminator Method of DNA Sequencing 56
 - D. Genome Sequencing 60
 - E. Sequences, Mutation, and Evolution 61
- 5. Manipulating DNA 62
 - A. Cloning Techniques 63
 - B. DNA Libraries 66
 - C. DNA Amplification by the Polymerase Chain Reaction 68
 - D. Applications of Recombinant DNA Technology 70
- **Box 3-1** Perspectives in Biochemistry: Restriction Fragment Length Polymorphisms 55
- **Box 3-2** Pathways of Discovery: Francis Collins and the Gene for Cystic Fibrosis 59
- **Box 3-3** Perspectives in Biochemistry: Ethical Aspects of Recombinant DNA Technology 72

CHAPTER 4 Amino Acids 76

- 1. Amino Acid Structure 77
 - A. General Properties 77
 - B. Peptide Bonds 80
 - C. Classification and Characteristics 81
 - D. Acid-Base Properties 84
 - E. A Few Words on Nomenclature 85
- 2. Stereochemistry 86
- 3. Amino Acid Derivatives 89
 - A. Side Chain Modifications in Proteins 89
 - B. Biologically Active Amino Acids 90
- **Box 4-1** Pathways of Discovery: William C. Rose and the Discovery of Threonine 80
- Box 4-2 Perspectives in Biochemistry: The RS System 88
- Box 4-3 Perspectives in Biochemistry: Green Fluorescent
 Protein 90

CHAPTER 5 Proteins: Primary Structure 94

- 1. Polypeptide Diversity 95
- 2. Protein Purification and Analysis 97
 - A. General Approach to Purifying Proteins 98
 - B. Protein Solubility 101
 - C. Chromatography 102
 - D. Electrophoresis 105
 - E. Ultracentrifugation 107
- 3. Protein Sequencing 108
 - A. Preliminary Steps 110
 - B. Polypeptide Cleavage 113
 - C. Edman Degradation 115
 - D. Sequencing by Mass Spectrometry 116
 - E. Reconstructing the Protein's Sequence 118
- 4. Protein Evolution 120
 - A. Protein Sequence Evolution 120
 - B. Gene Duplication and Protein Families 124
 - C. Protein Modules 125
- Box 5-1 Perspectives in Biochemistry: Combinatorial Peptide Libraries 96
- Box 5-2 Pathways of Discovery: Frederick Sanger and Protein Sequencing 109

CHAPTER 6 Proteins: Three-Dimensional Structure 129

- 1. Secondary Structure 130
 - A. The Peptide Group 130
 - B. Regular Secondary Structure: The α Helix and the β Sheet 133
 - C. Fibrous Proteins 138
 - D. Nonrepetitive Protein Structure 142
- 2. Tertiary Structure 144
 - A. Determining Protein Structures 144
 - B. Side Chain Location and Polarity 149
 - C. Supersecondary Structures and Domains 150
 - D. Protein Families 154
- 3. Quaternary Structure and Symmetry 155
- 4. Protein Stability 156
 - A. Forces That Stabilize Protein Structure 157
 - B. Protein Dynamics 159
 - C. Protein Denaturation and Renaturation 159
- 5. Protein Folding 161
 - A. Protein Folding Pathways 161
 - B. Protein Disulfide Isomerase 162
 - C. Molecular Chaperones 164
 - D. Diseases Caused by Protein Misfolding 170
- 6. Structural Bioinformatics 174
- Box 6-1 Pathways of Discovery: Linus Pauling and Structural Biochemistry 134
- Box 6-2 Biochemistry in Health and Disease: Collagen Diseases 141
- Box 6-3 Perspectives in Biochemistry: Thermostable Proteins 160
- Box 6-4 Perspectives in Biochemistry: Protein Structure Prediction and Protein Design 164

CHAPTER 7 Protein Function: Myoglobin and

Hemoglobin 181

- 1. Myoglobin 182
 - A. Myoglobin Structure 182
 - B. Myoglobin Function 183
- 2. Hemoglobin 185
 - A. Hemoglobin Structure 186
 - B. Oxygen Binding to Hemoglobin 190
- 3. Cooperativity 192
 - A. Mechanism of Cooperativity in Hemoglobin 192
 - B. Allosteric Proteins 199
- 4. Abnormal Hemoglobins 200
- **Box 7-1** Perspectives in Biochemistry: Other Oxygen-Transport Proteins 186
- **Box 7-2** Pathways of Discovery: Max Perutz and the Structure and Function of Hemoglobin 187
- **Box 7-3** *Biochemistry in Health and Disease:* High-Altitude Adaptation 198

CHAPTER 8 Carbohydrates 206

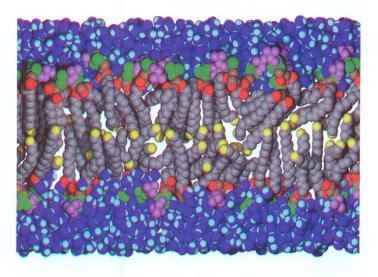
- 1. Monosaccharides 207
 - A. Classification of Monosaccharides 207
 - B. Configuration and Conformation 209
 - C. Sugar Derivatives 212
- 2. Polysaccharides 214
 - A. Disaccharides 215
 - B. Structural Polysaccharides: Cellulose and Chitin 215
 - C. Storage Polysaccharides: Starch and Glycogen 218
 - D. Glycosaminoglycans 219
- 3. Glycoproteins 222
 - A. Proteoglycans 222
 - B. Bacterial Cell Walls 223
 - C. Glycosylated Proteins 225
 - D. Functions of Oligosaccharides 228
- Box 8-1 Biochemistry in Health and Disease: Lactose Intolerance 215
- Box 8-2 Perspectives in Biochemistry: Artificial Sweeteners 216
- Box 8-3 Biochemistry in Health and Disease: Peptidoglycan-Specific Antibiotics 225

CHAPTER 9 Lipids and Biological Membranes 233

- 1. Lipid Classification 234
 - A. Fatty Acids 234
 - B. Triacylglycerols 236
 - C. Glycerophospholipids 237
 - D. Sphingolipids 240
 - E. Steroids 242
 - F. Other Lipids 245

- 2. Lipid Bilayers 248
 - A. Why Bilayers Form 248
 - B. Lipid Mobility 249
- 3. Membrane Proteins 251
 - A. Integral Membrane Proteins 251
 - B. Lipid-Linked Proteins 257
 - C. Peripheral Membrane Proteins 258
- 4. Membrane Structure and Assembly 259
 - A. The Fluid Mosaic Model 259
 - B. The Membrane Skeleton 261
 - C. Lipid Asymmetry 264
 - D. The Secretory Pathway 267
 - E. Vesicle Trafficking 272
 - F. Vesicle Fusion 278

Box 9-1 Biochemistry in Health and Disease: Lung Surfactant 239
 Box 9-2 Pathways of Discovery: Richard Henderson and the Structure of Bacteriorhodopsin 254


CHAPTER 10 Membrane Transport 284

- 1. Thermodynamics of Transport 285
- 2. Passive-Mediated Transport 286
 - A. lonophores 286
 - B. Porins 288
 - C. Ion Channels 289
 - D. Aquaporins 298
 - E. Transport Proteins 299
- 3. Active Transport 303
 - A. (Na^+-K^+) -ATPase 303
 - B. Ca²⁺-ATPase 305
 - C. Ion Gradient-Driven Active Transport 307

Box 10-1 Perspectives in Biochemistry: Gap Junctions 300

Box 10-2 Perspectives in Biochemistry: Differentiating Mediated and Nonmediated Transport 302

Box 10-3 Biochemistry in Health and Disease: The Action of Cardiac Glycosides 306

PART III ENZYMES

CHAPTER 11 Enzymatic Catalysis 312

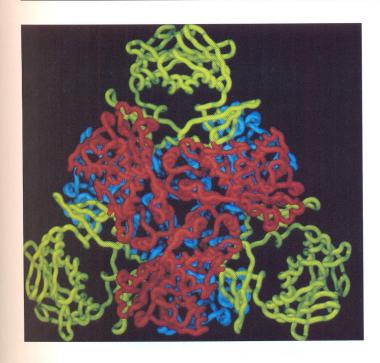
- 1. General Properties of Enzymes 313
 - A. Enzyme Nomenclature 314
 - B. Substrate Specificity 315
 - C. Cofactors and Coenzymes 316
- 2. Activation Energy and the Reaction Coordinate 319
- 3. Catalytic Mechanisms 321
 - A. Acid-Base Catalysis 323
 - B. Covalent Catalysis 325
 - C. Metal Ion Catalysis 326
 - D. Catalysis through Proximity and Orientation Effects 327
 - E. Catalysis by Preferential Transition State Binding 329
- 4. Lysozyme 331
 - A. Enzyme Structure 332
 - B. Catalytic Mechanism 336
- 5. Serine Proteases 340
 - A. The Active Site 340
 - B. X-Ray Structures 342
 - C. Catalytic Mechanism 346
 - D. Zymogens 351

Box 11-1 Perspectives in Biochemistry: Effects of pH on Enzyme Activity 323

Box 11-2 Perspectives in Biochemistry: Observing Enzyme Action by X-Ray Crystallography 334

Box 11-3 Biochemistry in Health and Disease: Nerve Poisons 342

Box 11-4 Biochemistry in Health and Disease: The Blood Coagulation Cascade 352


CHAPTER 12 Enzyme Kinetics, Inhibition, and Regulation 357

- 1. Reaction Kinetics 358
 - A. Chemical Kinetics 358
 - B. Enzyme Kinetics 360
 - C. Analysis of Kinetic Data 367
 - D. Bisubstrate Reactions 369
- 2. Enzyme Inhibition 370
 - A. Competitive Inhibition 371
 - B. Uncompetitive Inhibition 375
 - C. Mixed Inhibition 376
- 3. Allosteric Regulation of Enzyme Activity 380
- 4. Drug Design 385
 - A. Drug Discovery 386
 - B. Bioavailability and Toxicity 387
 - C. Clinical Trials 388
 - D. Cytochrome P450 and Adverse Drug Reactions 389
- Box 12-1 Perspectives in Biochemistry: Isotopic Labeling 361
- Box 12-2 Pathways of Discovery: J.B.S. Haldane and Enzyme

Action 363

Box 12-3 Perspectives in Biochemistry: Kinetics and Transition State Theory 366

Box 12-4 Biochemistry in Health and Disease: HIV Enzyme Inhibitors 378

PART IV METABOLISM

CHAPTER 13 Introduction to Metabolism 395

- 1. Overview of Metabolism 396
 - A. Trophic Strategies 396
 - B. Metabolic Pathways 397
 - C. Thermodynamic Considerations 401
 - D. Control of Metabolic Flux 402
- 2. "High-Energy" Compounds 404
 - A. ATP and Phosphoryl Group Transfer 406
 - B. Coupled Reactions 407
 - C. Other Phosphorylated Compounds 410
 - D. Thioesters 413
- 3. Oxidation—Reduction Reactions 414
 - A. NAD⁺ and FAD 414
 - B. The Nernst Equation 415
 - C. Measurements of Reduction Potential Differences 417
- 4. Experimental Approaches to the Study of Metabolism 419
- A. Tracing Metabolic Fates 420
- B. Perturbing the System 421
- C. DNA Microarrays 422
- D. Proteomics 424

Box 13-1 Perspectives in Biochemistry: Oxidation States of Carbon 398

Box 13-2 Perspectives in Biochemistry: Mapping Metabolic

Pathways 399

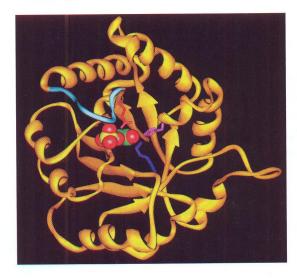
Box 13-3 Pathways of Discovery: Fritz Lipmann and "High-Energy" Compounds 405

Box 13-4 Perspectives in Biochemistry: ATP and ΔG 407

CHAPTER 14 Glucose Catabolism 427

- 1. Overview of Glycolysis 428
- 2. The Reactions of Glycolysis 431

A. Hexokinase: First Use of ATP 431


- B. Phosphoglucose Isomerase 432
- C. Phosphofructokinase: Second Use of ATP 433
- D. Aldolase 434
- E. Triose Phosphate Isomerase 436
- F. Glyceraldehyde-3-Phosphate Dehydrogenase: First "High-Energy" Intermediate Formation 439
- G. Phosphoglycerate Kinase: First ATP Generation 441
- H. Phosphoglycerate Mutase 441
- I. Enolase: Second "High-Energy" Intermediate Formation 442
- J. Pyruvate Kinase: Second ATP Generation 443
- 3. Fermentation: The Anaerobic Fate of Pyruvate 446
 - A. Homolactic Fermentation 447
 - B. Alcoholic Fermentation 448
 - C. Energetics of Fermentation 451
- 4. Control of Glycolysis 452
 - A. Phosphofructokinase: The Major Flux-Controlling Enzyme of Glycolysis in Muscle 453
 - B. Substrate Cycling 456
- 5. Metabolism of Hexoses Other than Glucose 458
 - A. Fructose 458
 - B. Galactose 460
 - C. Mannose 462
- 6. The Pentose Phosphate Pathway 462
 - A. Stage 1: Oxidative Reactions of NADPH Production 464
 - B. Stage 2: Isomerization and Epimerization of Ribulose-5-Phosphate 465
 - C. Stage 3: Carbon—Carbon Bond Cleavage and Formation Reactions 465
 - D. Control of the Pentose Phosphate Pathway 466

Box 14-1 Pathways of Discovery: Otto Warburg and Studies of Metabolism 429

Box 14-2 Perspectives in Biochemistry: Synthesis of 2,3-Bisphosphoglycerate in Erythrocytes and Its Effect on the Oxygen Carrying Capacity of the Blood 444

Box 14-3 Perspectives in Biochemistry: Glycolytic ATP Production in Muscle 453

Box 14-4 Biochemistry in Health and Disease: Glucose-6-Phosphate Dehydrogenase Deficiency 468

CHAPTER 15 Glycogen Metabolism and Gluconeogenesis 472

- 1. Glycogen Breakdown 474
 - A. Glycogen Phosphorylase 475
 - B. Glycogen Debranching Enzyme 479
 - C. Phosphoglucomutase 480
- 2. Glycogen Synthesis 481
 - A. UDP-Glucose Pyrophosphorylase 484
 - B. Glycogen Synthase 485
 - C. Glycogen Branching Enzymes 487
- 3. Control of Glycogen Metabolism 487
 - A. Direct Allosteric Control of Glycogen Phosphorylase and Glycogen Synthase 487
 - B. Covalent Modification of Glycogen Phosphorylase and Glycogen Synthase 489
 - C. Hormonal effects on Glycogen Metabolism 497
- 4. Gluconeogenesis 500
 - A. Pyruvate to Phosphoenolpyruvate 500
 - B. Hydrolytic Reactions 505
 - C. Regulation of Gluconeogenesis 505
- 5. Other Carbohydrate Biosynthetic Pathways 507
- Box 15-1 Pathways of Discovery: Carl and Gerty Cori and Glucose Metabolism 475
- Box 15-2 Biochemistry in Health and Disease: Glycogen Storage Diseases 482
- **Box 15-3** Perspectives in Biochemistry: Optimizing Glycogen Structure 488
- Box 15-4 Perspectives in Biochemistry: Lactose Synthesis 508

CHAPTER 16 Citric Acid Cycle 514

- 1. Overview of the Citric Acid Cycle 515
- 2. Synthesis of Acetyl-Coenzyme A 517
 - A. The Pyruvate Dehydrogenase Multienzyme Complex 519
 - B. The Reactions of the Pyruvate Dehydrogenase Complex 521
- 3. Enzymes of the Citric Acid Cycle 524
 - A. Citrate Synthase 525
 - B. Aconitase 526
 - C. NAD⁺-Dependent Isocitrate Dehydrogenase 527
 - D. α-Ketoglutarate Dehydrogenase 528
 - E. Succinyl-CoA Synthetase 528
 - F. Succinate Dehydrogenase 530
 - G. Fumarase 531
 - H. Malate Dehydrogenase 531
- 4. Regulation of the Citric Acid Cycle 531
 - A. Regulation of Pyruvate Dehydrogenase 532
 - B. The Rate-Controlling Enzymes of the Citric Acid Cycle 533
- 5. Reactions Related to the Citric Acid Cycle 535
 - A. Pathways that Use Citric Acid Cycle Intermediates 536
 - B. Reactions that Replenish Citric Acid Cycle Intermediates 537
 - C. The Glyoxylate Cycle 538
- Box 16-1 Pathways of Discovery: Hans Krebs and the Citric Acid Cycle 518

Box 16-2 Biochemistry in Health and Disease: Arsenic Poisoning 525
 Box 16-3 Perspectives in Biochemistry: Evolution of the Citric Acid
 Cycle 540

CHAPTER 17 Electron Transport and Oxidative

Phosphorylation 545

- 1. The Mitochondrion 546
 - A. Mitochondrial Anatomy 547
 - B. Mitochondrial Transport Systems 548
- 2. Electron Transport 549
 - A. Thermodynamics of Electron Transport 550
 - B. The Sequence of Electron Transport 551
 - C. Complex I (NADH-Coenzyme Q Oxidoreductase) 554
 - D. Complex II (Succinate—Coenzyme Q Oxidoreductase) 558
 - E. Complex III (Coenzyme Q—Cytochrome c Oxidoreductase) 560
 - F. Complex IV (Cytochrome c Oxidase) 564
- 3. Oxidative Phosphorylation 567
 - A. The Chemiosmotic Theory 568
 - B. ATP Synthase 571
 - C. The P/O Ratio 577
 - D. Uncoupling Oxidative Phosphorylation 578
- 4. Control of Oxidative Metabolism 579
 - A. Control of Oxidative Phosphorylation 579
 - B. Coordinated Control of Oxidative Metabolism 582
 - C. Physiological Implications of Aerobic Metabolism 582

Box 17-1 Perspectives in Biochemistry: Cytochromes Are Electron-Transport Heme Proteins 558

Box 17-2 Pathways of Discovery: Peter Mitchell and the Chemiosmotic Theory 569

Box 17-3 Perspectives in Biochemistry: Bacterial Electron Transport and Oxidative Phosphorylation 570

Box 17-4 Perspectives in Biochemistry: Uncoupling in Brown Adipose Tissue Generates Heat 580

Box 17-5 *Biochemistry in Health and Disease:* Oxygen Deprivation in Heart Attack and Stroke 584

CHAPTER 18 Photosynthesis 590

- 1. Chloroplasts 591
 - A. Chloroplast Anatomy 592
 - B. Light-Absorbing Pigments 592
- 2. The Light Reactions 596
 - A. The Interaction of Light and Matter 596
 - B. Electron Transport in Photosynthetic Bacteria 597
 - C. Two-Center Electron Transport 600
 - D. Photophosphorylation 612
- 3. The Dark Reactions 613
 - A. The Calvin Cycle 613
 - B. Carbohydrate Synthesis 618
 - C. Control of the Calvin Cycle 619
 - D. Photorespiration 621
- **Box 18-1** Perspectives in Biochemistry: Segregation of PSI and PSII 611

CHAPTER 19 Lipid Metabolism 627

- 1. Lipid Digestion, Absorption, and Transport 628
 - A. Digestion and Absorption 628
 - B. Lipid Transport 630
- 2. Fatty Acid Oxidation 635
 - A. Fatty Acid Activation 636
 - B. Transport across the Mitochondrial Membrane 636
 - C. B Oxidation 638
 - D. Oxidation of Unsaturated Fatty Acids 640
 - E. Oxidation of Odd-Chain Fatty Acids 642
 - F. Peroxisomal & Oxidation 648
- 3. Ketone Bodies 649
- 4. Fatty Acid Biosynthesis 650
 - A. Transport of Mitochondrial Acetyl-CoA into the Cytosol 651
 - B. Acetyl-CoA Carboxylase 651
 - C. Fatty Acid Synthase 653
 - D. Elongases and Desaturases 657
 - E. Synthesis of Triacylglycerols 658
- 5. Regulation of Fatty Acid Metabolism 660
- 6. Synthesis of Other Lipids 663
 - A. Glycerophospholipids 663
 - B. Sphingolipids 666
 - C. Prostaglandins 669
- 7. Cholesterol Metabolism 671
 - A. Cholesterol Biosynthesis 671
 - B. Regulation of Cholesterol Synthesis 674
 - C. Cholesterol Transport and Atherosclerosis 677

Box 19-1 Biochemistry in Health and Disease: Vitamin B₁₂
Deficiency 644

Box 19-2 Pathways of Discovery: Dorothy Crowfoot Hodgkin and the Structure of Vitamin B₁₂ 647

Box 19-3 Perspectives in Biochemistry: Triclosan: An Inhibitor of Fatty Acid Synthesis 658

Box 19-4 Biochemistry in Health and Disease: Sphingolipid Degradation and Lipid Storage Diseases 668

CHAPTER 20 Amino Acid Metabolism 682

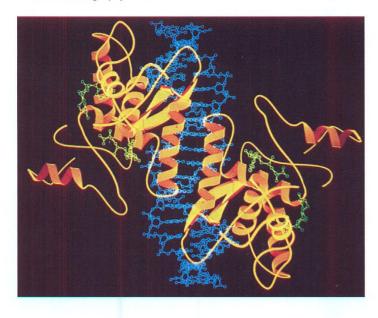
- 1. Protein Degradation 683
 - A. Lysosomal Degradation 683
 - B. Ubiquitin 684
 - C. The Proteasome 685
- 2. Amino Acid Deamination 688
 - A. Transamination 688
 - B. Oxidative Deamination 692
- 3. The Urea Cycle 692
 - A. Reactions of the Urea Cycle 693
 - B. Regulation of the Urea Cycle 697
- 4. Breakdown of Amino Acids 697
 - A. Alanine, Cysteine, Glycine, Serine, and Threonine Are Degraded to Pyruvate 698
 - B. Asparagine and Aspartate Are Degraded to Oxaloacetate 701

- C. Arginine, Glutamate, Glutamine, Histidine, and Proline Are Degraded to $\alpha\text{-Ketoglutarate}$ 701
- D. Isoleucine, Methionine, and Valine Are Degraded to Succinyl-CoA 702
- E. Leucine and Lysine Are Degraded Only to Acetyl-CoA and/or Acetoacetate 708
- F. Tryptophan Is Degraded to Alanine and Acetoacetate 708
- G. Phenylalanine and Tyrosine Are Degraded to Fumarate and Acetoacetate 710
- 5. Amino Acid Biosynthesis 713
 - A. Biosynthesis of the Nonessential Amino Acids 714
 - B. Biosynthesis of the Essential Amino Acids 719
- 6. Other Products of Amino Acid Metabolism 724
 - A. Heme Biosynthesis and Degradation 724
 - B. Biosynthesis of Physiologically Active Amines 730
 - C. Nitric Oxide 731
- 7. Nitrogen Fixation 732
- **Box 20-1** *Biochemistry in Health and Disease:* Homocysteine, a Marker of Disease 706
- **Box 20-2** *Biochemistry in Health and Disease:* Phenylketonuria and Alcaptonuria Result from Defects in Phenylalanine Degradation 712
- **Box 20-3** *Biochemistry in Health and Disease:* The Porphyrias 728
- Box 20-4 Perspectives in Biochemistry: Anammox Bacteria 738

CHAPTER 21 Mammalian Fuel Metabolism: Integration and Regulation 743

- 1. Organ Specialization 744
 - A. The Brain 746
 - B. Muscle 746
 - C. Adipose Tissue 748
 - D. Liver 749
 - E. Kidney 751
 - F. Interorgan Metabolic Pathways 751
- 2. Hormonal Control of Fuel Metabolism 752
- 3. Signal Transduction 756
 - A. G Protein-Coupled Receptors 757
 - B. Heterotrimeric G Proteins 759
 - C. Adenylate Cyclase 761
 - D. Receptor Tyrosine Kinases 764
 - E. Protein Phosphatases 769
 - F. The Phosphoinositide Pathway 771
- 4. Disturbances in Fuel Metabolism 774
 - A. Starvation 774
 - B. Diabetes Mellitus 779
 - C. Obesity 782
- **Box 21-1** Biochemistry in Health and Disease: Drugs and Toxins That Affect Cell Signaling 763
- **Box 21-2** *Biochemistry in Health and Disease:* Oncogenes and Cancer 768
- Box 21-3 Biochemistry in Health and Disease: Anthrax 776
- Box 21-4 Pathways of Discovery: Frederick Banting and Charles Best and the Discovery of Insulin 780

CHAPTER 22 Nucleotide Metabolism 787


- 1. Synthesis of Purine Ribonucleotides 788
 - A. Synthesis of Inosine Monophosphate 789
 - B. Synthesis of Adenine and Guanine Ribonucleotides 792
 - C. Regulation of Purine Nucleotide Biosynthesis 794
 - D. Salvage of Purines 795
- 2. Synthesis of Pyrimidine Ribonucleotides 795
 - A. Synthesis of UMP 796
 - B. Synthesis of UTP and CTP 798
 - C. Regulation of Pyrimidine Nucleotide Biosynthesis 798
- 3. Formation of Deoxyribonucleotides 799
 - A. Production of Deoxyribose Residues 799
 - B. Origin of Thymine 804
- 4. Nucleotide Degradation 809
 - A. Catabolism of Purines 809
 - B. Fate of Uric Acid 811
 - C. Catabolism of Pyrimidines 814

Box 22-1 Biochemistry in Health and Disease: Inhibition of Thymidylate Synthesis in Cancer Therapy 807

PART V GENE EXPRESSION AND REPLICATION

CHAPTER 23 Nucleic Acid Structure 817

- 1. The DNA Helix 818
 - A. The Geometry of DNA 818
 - B. Flexibility of DNA 824
 - C. Supercoiled DNA 826
- 2. Forces Stabilizing Nucleic Acid Structures 835
 - A. Denaturation and Renaturation 835
 - B. Base Pairing 836
 - C. Base Stacking and Hydrophobic Interactions 837
 - D. Ionic Interactions 837
 - E. RNA Structure 838
- 3. Fractionation of Nucleic Acids 842
 - A. Chromatography 842

- B. Electrophoresis 842
- C. Ultracentrifugation 844
- 4. DNA-Protein Interactions 845
 - A. Restriction Endonucleases 846
 - B. Prokaryotic Transcriptional Control Motifs 847
 - C. Eukaryotic Transcription Factors 850
- 5. Eukaryotic Chromosome Structure 853
 - A. Histones 854
 - B. Nucleosomes 855
 - C. Higher Levels of Chromatin Organization 858
- Box 23-1 Pathways of Discovery: Rosalind Franklin and the Structure of DNA 822
- **Box 23-2** Biochemistry in Health and Disease: Inhibitors of Topoisomerases as Antibiotics and Anticancer Chemotherapeutic Agents 834
- Box 23-3 Perspectives in Biochemistry: The RNA World 841
- Box 23-4 Perspectives in Biochemistry: Packaging Viral
 Nucleic Acids 862

CHAPTER 24 DNA Replication, Repair, and Recombination 867

- 1. Overview of DNA Replication 868
- 2. Prokaryotic DNA Replication 871
 - A. DNA Polymerases 871
 - B. Initiation of Replication 877
 - C. Synthesis of the Leading and Lagging Strands 879
 - D. Termination of Replication 882
 - E. Fidelity of Replication 884
- 3. Eukaryotic DNA Replication 884
 - A. Eukaryotic DNA Polymerases 885
 - B. Initiation and Elongation of Eukaryotic DNA Replication 886
 - C. Telomeres and Telomerase 888
- 4. DNA Damage 891
 - A. Mutagenesis 892
 - B. Carcinogens 895
- 5. DNA Repair 896
 - A. Direct Reversal of Damage 896
 - B. Base Excision Repair 896
 - C. Nucleotide Excision Repair 898
 - D. Mismatch Repair 900
 - E. Error-Prone Repair 900
- 6. Recombination 902
 - A. The Mechanism of Homologous Recombination 903
 - B. Recombination Repair 908
 - C. Transposition 910
- **Box 24-1** Pathways of Discovery: Arthur Kornberg and DNA Polymerase I 872
- Box 24-2 Perspectives in Biochemistry: Reverse Transcriptase 886
- **Box 24-3** *Biochemistry in Health and Disease:* Telomerase, Aging, and Cancer 891
- Box 24-4 Perspectives in Biochemistry: DNA Methylation 894
- Box 24-5 Perspectives in Biochemistry: Why Doesn't DNA Contain Uracil? 898

CHAPTER 25 Transcription and RNA Processing 919

- 1. RNA Polymerase 920
 - A. Enzyme Structure 920
 - B. Template Binding 921
 - C. Chain Elongation 924
 - D. Chain Termination 927
- 2. Transcription in Eukaryotes 928
 - A. Eukaryotic RNA Polymerases 929
 - B. Eukaryotic Promoters 933
 - C. Transcription Factors 936
- 3. Posttranscriptional Processing 940
 - A. Messenger RNA Processing 940
 - B. Ribosomal RNA Processing 951
 - C. Transfer RNA Processing 955
- Box 25-1 Perspectives in Biochemistry: Collisions between DNA Polymerase and RNA Polymerase 926
- Box 25-2 Biochemistry in Health and Disease: Inhibitors of Transcription 930
- Box 25-3 Pathways of Discovery: Richard Roberts and Phillip Sharp and the Discovery of Introns 943

CHAPTER 26 Translation 960

- 1. The Genetic Code 961
 - A. Codons Are Triplets That Are Read Sequentially 962
 - B. Deciphering the Genetic Code 963
 - C. The Nature of the Genetic Code 964
- 2. Transfer RNA and Its Aminoacylation 967
 - A. tRNA Structure 967
 - B. Aminoacyl—tRNA Synthetases 969
 - C. Codon-Anticodon Interactions 974
- 3. Ribosomes 977
 - A. The Prokaryotic Ribosome 977
 - B. The Eukaryotic Ribosome 983
- 4. Translation 984
 - A. Chain Initiation 986
 - B. Chain Elongation 991
 - C. Chain Termination 1001
- 5. Posttranslational Processing 1004
 - A. Protein Folding 1004
 - B. Covalent Modification 1005
- Box 26-1 Perspectives in Biochemistry: Evolution of the Genetic Code 966
- Box 26-2 Perspectives in Biochemistry: Expanding the Genetic Code 976
- Box 26-3 Biochemistry in Health and Disease: The Effects of Antibiotics on Protein Synthesis 1000

CHAPTER 27 Regulation of Gene Expression 1010

- 1. Genome Organization 1011
 - A. Gene Number 1012
 - B. Gene Clusters 1015

- C. Repetitive DNA Sequences 1016
- 2. Regulation of Prokaryotic Gene Expression 1021
 - A. The *lac* Repressor 1021
 - B. Catabolite Repression: An Example of Gene Activation 1025
 - C. Attenuation 1026
 - D. Riboswitches 1029
- 3. Regulation of Eukaryotic Gene Expression 1030
 - A. Chromatin Structure and Gene Expression 1030
 - B. Control of Transcription in Eukaryotes 1043
 - C. Posttranscriptional Control Mechanisms 1050
 - D. The Cell Cycle, Cancer, and Apoptosis 1054
 - E. The Molecular Basis of Development 1062
- **Box 27-1** Biochemistry in Health and Disease: Trinucleotide Repeat Diseases 1018
- **Box 27-2** Perspectives in Biochemistry: Inferring Genealogy from DNA Sequences 1021
- Box 27-3 Perspectives in Biochemistry: X-Chromosome Inactivation 1031
- Box 27-4 Perspectives in Biochemistry: Nonsense-Mediated Decay 1051

CHAPTER 28 Protein Function Part II: Cytoskeletal and Motor Proteins and Antibodies 1072

- 1. Actin and Microfilaments 1073
 - A. Actin Structure 1074
 - B. Microfilament Dynamics 1075
- 2. Muscle Contraction 1080
 - A. Structure of Striated Muscle 1080
 - B. The Actin-Myosin Reaction Cycle 1086
 - C. Unconventional Myosin V 1088
- 3. Tubulin and Microtubules 1091
 - A. The Tubulin Dimer 1091
 - B. Microtubule Dynamics 1092
- 4. Microtubule Motors 1094
 - A Kinesins 1095
 - B. Dyneins 1099
- 5. Antibodies 1104
 - A. Overview of the Immune System 1104
 - B. Antibody Structure 1105
 - C. Antigen-Antibody Binding 1106
 - D. Generating Antibody Diversity 1108
- **Box 28-1** Pathways of Discovery: Hugh Huxley and the Sliding Filament Model 1082
- Box 28-2 Biochemistry in Health and Disease: Myosin Mutations and Deafness 1090
- Box 28-3 Biochemistry in Health and Disease: Drugs That Bind Microtubules 1096
- Box 28-4 Perspectives in Biochemistry: Monoclonal Antibodies 1108
- **Box 28-5** Biochemistry in Health and Disease: Autoimmune

Diseases 1110

APPENDIX

Bioinformatics Exercises 1115

Answers to Bioinformatics Exercises 1124

Solutions to Problems SP-1

Glossary G-1

Guide to Media Resources GMR-1

Index I-1