Writing down Lagrangians stnotton

0	0	.3 Classical fields	3
0		What is monthing faill the set 2	1
	0.1	What is quantum field theory?	1
	0.2	What is a field?	2
	0.3	Who is this book for?	2 3
	0.4	Special relativity	
	0.5	Fourier transforms	6 7
	0.6	Electromagnetism	en á
I	Tł	ne Universe as a set of harmonic oscillators	9
1	Tan	Examples of Lagrangians, or how to write down a the	10
T	Lag 1.1	rangians Fermat's principle	10
	1.1	Newton's laws	10
	1.2	Duration 1. Sand projections	10
	1.3	Termine in a line to the	11
	1.4	Lagrangians and least action Why does it work?	14
		rcises	10
	Exe	I CISES	11
2	Sim	ple harmonic oscillators	19
	2.1	Introduction	19
	2.2	Mass on a spring	19
	2.3	A trivial generalization	23
	2.4	Phonons	25
	Exe	rcises	27
-	~	.3 The death of single-particle quantum machanics	8132
3		upation number representation	28
	3.1	A particle in a box	28
	3.2	Changing the notation	29
	3.3	Replace state labels with operators	
	3.4	Indistinguishability and symmetry	31
	3.5	The continuum limit	
	Exe	rcises	36
4	Ma	king second quantization work	37
	4.1	Field operators	37
	4.2	How to second quantize an operator	39
	4.3	The kinetic energy and the tight-binding Hamiltonian	43
	4.4	Two particles	44

	4.5 The Hubbard model	46
	Exercises	48
II	Writing down Lagrangians	49
5	Continuous systems	50
	5.1 Lagrangians and Hamiltonians	50
	5.2 A charged particle in an electromagnetic field	52
	5.3 Classical fields	54
	5.4 Lagrangian and Hamiltonian density	55
	Exercises	58
•		
6	A first stab at relativistic quantum mechanics	59
	0.1 The Ment–Gordon equation	59 61
	0.2 Trobability currents and densities	61
	6.3 Feynman's interpretation of the negative energy states6.4 No conclusions	63
	Exercises	63
		00
7	Examples of Lagrangians, or how to write down a theory	64
	7.1 A massless scalar field	64
	7.2 A massive scalar field	65
	7.3 An external source	66
	7.4 The ϕ^4 theory	67
	7.5 Two scalar fields	67
	7.6 The complex scalar field	68
	Exercises	69
II		71
61	2.2 Mass on a spring	-
8	The passage of time	72
	8.1 Schrödinger's picture and the time-evolution operator	72
	8.2 The Heisenberg picture	74
	8.3 The death of single-particle quantum mechanics	75
	8.4 Old quantum theory is dead; long live fields!	76
	Exercises	78
9	Quantum mechanical transformations	79
9	9.1 Translations in spacetime	79
	9.2 Rotations	82
	9.3 Representations of transformations	83
	9.4 Transformations of quantum fields	85
	9.5 Lorentz transformations	86
	Exercises	88
10	Symmetry	90
	10.1 Invariance and conservation	90

	10.2 Noether's theorem	92
	10.3 Spacetime translation	94
	10.4 Other symmetries	96
	Exercises	97
59	1 23.2 The Gaussian integrabing garying barrow of a wolly 4.	1 2
11	Canonical quantization of fields	
	11.1 The canonical quantization machine	98
	11.2 Normalizing factors	101
	11.3 What becomes of the Hamiltonian?	102
	11.4 Normal ordering	104
	11.5 The meaning of the mode expansion	106
	Exercises	108
12	Examples of canonical quantization	109
	12.1 Complex scalar field theory	109
	12.2 Noether's current for complex scalar field theory	111
	12.3 Complex scalar field theory in the non-relativistic limit	112
	Exercises	116
	11 Meet some interactions	110
13	Fields with many components and	
	massive electromagnetism	117
	13.1 Internal symmetries	117
	13.2 Massive electromagnetism	120
	13.3 Polarizations and projections	123
	Exercises	125
14	Cauga fields and gauga theory	196
14	Gauge fields and gauge theory 14.1 What is a gauge field?	120
	14.1 What is a gauge field? 14.2 Electromagnetism is the simplest gauge theory	120
	14.3 Canonical quantization of the electromagnetic field	129
	D · ·	134
	Exercises	104
15	Discrete transformations	135
	15.1 Charge conjugation	135
	15.2 Parity	136
	15.3 Time reversal	137
	15.4 Combinations of discrete and continuous transformations	139
	Exercises	142
IV	28.0 J he path magrat for termions	
IV	Propagators and perturbations	143
16	Propagators and Green's functions	144
	16.1 What is a Green's function?	144
	16.2 Propagators in quantum mechanics	146
	16.3 Turning it around: quantum mechanics from the	
		149
	16.4 The many faces of the propagator	151
	Exercises	152

17	Propagators and fields	154
	17.1 The field propagator in outline	155
	17.2 The Feynman propagator	156
	17.3 Finding the free propagator for scalar field theory	158
	17.4 Yukawa's force-carrying particles	159
	17.5 Anatomy of the propagator	162
	Exercises	163
18	The S-matrix	165
	18.1 The S-matrix: a hero for our times	166
	18.2 Some new machinery: the interaction representation	167
	18.3 The interaction picture applied to scattering	168
	18.4 Perturbation expansion of the S -matrix	169
	18.5 Wick's theorem	171
	Exercises	174
19	Expanding the S-matrix: Feynman diagrams	175
	19.1 Meet some interactions	176
	19.2 The example of ϕ^4 theory	
	19.3 Anatomy of a diagram	181
	19.4 Symmetry factors	182
	19.5 Calculations in <i>p</i> -space	183
	19.6 A first look at scattering	186
	Exercises	187
20	Scattering theory	30
	20.1 Another theory: Yukawa's $\psi^{\dagger}\psi\phi$ interactions	188
	20.2 Scattering in the $\psi^{\dagger}\psi\phi$ theory	190
	20.3 The transition matrix and the invariant amplitude	192
	20.4 The scattering cross-section	193
	Exercises	194
		105
V	Interlude: wisdom from statistical physics	195
21	Statistical physics: a crash course	196
	21.1 Statistical mechanics in a nutshell	196
	21.2 Sources in statistical physics	197
	21.3 A look ahead Exercises	198 199
22	The generating functional for fields	201
	22.1 How to find Green's functions	201
	22.2 Linking things up with the Gell-Mann–Low theorem	203
	22.3 How to calculate Green's functions with diagrams	204
	22.4 More facts about diagrams	206
	Exercises	208

vi rath muegrais	VI	Path	integrals	
------------------	----	------	-----------	--

23 Path integrals: I said to him, 'You're crazy'21023.1 How to do quantum mechanics using path integrals21023.2 The Gaussian integral21323.3 The propagator for the simple harmonic oscillator217Exercises22024 Field integrals22124.1 The functional integral for fields22124.3 The generating functional for scalar fields22324.3 The generating functional for scalar fields22325 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a continuous symmetry24226.5 Order in reduced dimensions244Exercises24527 Coherent states24527 Coherent states of the harmonic oscillator24727.1 Coherent states of the harmonic oscillator24727.3 Number, phase and the phase operator25528.1 Grassmann numbers: coherent states25528.1 Grassmann numbers:25528.2 Coherent states for fermions25528.3 The path integral for fermions25529.4 Viotices25929 Topological objects26029.1 What is topology?26029.2 Kinks262	VI Path integrals	209
23.1 How to do quantum mechanics using path integrals21023.2 The Gaussian integral21323.3 The propagator for the simple harmonic oscillator217Exercises22024 Field integrals22124.1 The functional integral for fields22124.3 The generating functional for scalar fields22224.3 The generating functional for scalar fields223Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking a continuous symmetry: Coldstone modes24026.4 Breaking a continuous symmetry: Coldstone modes24426.5 Order in reduced dimensions244Exercises24527 Coherent states25027.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states25528 Crassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.4 Coherent states for fermions25729 Topological objects26029.1 What is topology?26029.2 Kinks260		210
23.2 The Gaussian integral21323.3 The propagator for the simple harmonic oscillator217Exercises22024 Field integrals22124.1 The functional integral for fields22124.2 Which field integrals should you do?22224.3 The generating functional for scalar fields223Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a continuous symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states25027.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states25528 Grassmann numbers: coherent states25528.1 Grassmann numbers:25528.2 Coherent states for fermions25528.3 The path integral for fermions25528.4 Coherent states for fermions25728.3 The path integral for fermions25728.4 Coherent states for fermions25729 Topological objects26029.1 What is topology?26029.2 Kinks26		210
Exercises22024 Field integrals22124.1 The functional integral for fields22124.2 Which field integrals should you do?22224.3 The generating functional for scalar fields223Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking a symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24527 Coherent states of the harmonic oscillator24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states25228 Grassmann numbers: coherent states25528 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 Chapter at the path integral for fermions25729.7 Dopological objects26029.1 What is topology?26029.2 Kinks260		213
Exercises22024 Field integrals22124.1 The functional integral for fields22124.2 Which field integrals should you do?22224.3 The generating functional for scalar fields223Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking a symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24527 Coherent states of the harmonic oscillator24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states25228 Grassmann numbers: coherent states25528 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 Chapter at the path integral for fermions25729.7 Dopological objects26029.1 What is topology?26029.2 Kinks260	23.3 The propagator for the simple harmonic oscillator	217
24.1 The functional integral for fields22124.2 Which field integrals should you do?22224.3 The generating functional for scalar fields223Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a continuous symmetry: Goldstone modes24026.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states25228.1 Grassmann numbers: coherent states25528.1 Grassmann numbers:25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729.5 Topological objects26029.1 What is topology?26029.2 Kinks260		220
24.2 Which field integrals should you do?22224.3 The generating functional for scalar fields223Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states25528.2 Coherent states for fermions25528.2 Coherent states for fermions25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 Coherent states for fermions25728.5 The path integral for fermions25728.5 Coherent states for fermions25728.7 Coherent states for fermions25728.2 Coherent states for fermions25728.3 The path integral for fermions25729.1 What is topology?26029.1 What is topology?260	24 Field integrals	221
24.3 The generating functional for scalar fields223Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking a symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states25528 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 Ult Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	24.1 The functional integral for fields	221
Exercises22625 Statistical field theory22825.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological objects26029.1 What is topology?26029.2 Kinks260	24.2 Which field integrals should you do?	222
25Statistical field theory22825.1Wick rotation and Euclidean space22925.2The partition function23125.3Perturbation theory and Feynman rules233Exercises23626Broken symmetry23726.1Landau theory23726.2Breaking symmetry with a Lagrangian23926.3Breaking a continuous symmetry: Goldstone modes24026.4Breaking a symmetry in a gauge theory24226.5Order in reduced dimensions244Exercises24527Coherent states24727.1Coherent states of the harmonic oscillator24727.2What do coherent states look like?24927.3Number, phase and the phase operator25027.4Examples of coherent states252Exercises25328Grassmann numbers: coherent states25528.1Grassmann numbers25528.2Coherent states for fermions25728.3The path integral for fermions25728.3The path integral for fermions25728.3The path integral for fermions25729Topological ideas25929Topological objects26029.1What is topology?26029.2Kinks262	24.3 The generating functional for scalar fields	223
25.1 Wick rotation and Euclidean space22925.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions24427.1 Coherent states24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers:25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	Exercises	226
25.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers:25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological objects26029.1 What is topology?26029.2 Kinks262	25 Statistical field theory	228
25.2 The partition function23125.3 Perturbation theory and Feynman rules233Exercises23626 Broken symmetry23726.1 Landau theory23726.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers: coherent states25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	25.1 Wick rotation and Euclidean space	229
Exercises23626Broken symmetry23726.1Landau theory23726.2Breaking symmetry with a Lagrangian23926.3Breaking a continuous symmetry: Goldstone modes24026.4Breaking a symmetry in a gauge theory24226.5Order in reduced dimensions244Exercises24527Coherent states24727.1Coherent states of the harmonic oscillator24727.2What do coherent states look like?24927.3Number, phase and the phase operator25027.4Examples of coherent states252Exercises25328Grassmann numbers: coherent states25528.1Grassmann numbers:25528.2Coherent states for fermions25528.3The path integral for fermions25728.3The path integral for fermions25728.3The path integral for fermions25729Topological ideas25929Topological objects26029.1What is topology?26029.2Kinks262	25.2 The partition function	231
26 Broken symmetry23726.1 Landau theory23726.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers: coherent states25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	25.3 Perturbation theory and Feynman rules	233
26 Broken symmetry23726.1 Landau theory23726.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers: coherent states25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological objects26029.1 What is topology?26029.2 Kinks262	Exercises	236
26.2 Breaking symmetry with a Lagrangian23926.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	26 Broken symmetry	237
26.3 Breaking a continuous symmetry: Goldstone modes24026.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers: coherent states25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	26.1 Landau theory	237
26.4 Breaking a symmetry in a gauge theory24226.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers:25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions257258258VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	26.2 Breaking symmetry with a Lagrangian	239
26.5 Order in reduced dimensions244Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers: coherent states25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions257258258VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	26.3 Breaking a continuous symmetry: Goldstone modes	240
Exercises24527 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers:25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	26.4 Breaking a symmetry in a gauge theory	242
27 Coherent states24727.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 Coherent states for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	26.5 Order in reduced dimensions	244
27.1 Coherent states of the harmonic oscillator24727.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers: coherent states25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions257258258VII Topological ideas29 Topological objects26029.1 What is topology?26029.2 Kinks262	Exercises	245
27.2 What do coherent states look like?24927.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25729 Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	27 Coherent states	247
27.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states255and the path integral for fermions25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 Coherent states for fermions25728.5 The path integral for fermions25728.6 VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	27.1 Coherent states of the harmonic oscillator	247
21.3 Number, phase and the phase operator25027.4 Examples of coherent states252Exercises25328 Grassmann numbers: coherent states25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions25728.4 WII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	27.2 What do coherent states look like?	249
27.4 Examples of conerent states252Exercises25328 Grassmann numbers: coherent states255and the path integral for fermions25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions257Exercises258VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	27.3 Number, phase and the phase operator	250
Exercises25328 Grassmann numbers: coherent states and the path integral for fermions255 28.1 Grassmann numbers28.1 Grassmann numbers255 28.2 Coherent states for fermions28.2 Coherent states for fermions257 28.3 The path integral for fermions28.3 The path integral for fermions257 258VII Topological ideas25929 Topological objects 29.1 What is topology? 29.2 Kinks260 262	27.4 Examples of concrent states	252
and the path integral for fermions25528.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions257Exercises258VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	Exercises	253
28.1 Grassmann numbers25528.2 Coherent states for fermions25728.3 The path integral for fermions25728.3 The path integral for fermions257Exercises258VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	28 Grassmann numbers: coherent states	
28.1Coherent states for fermions25728.2Coherent states for fermions25728.3The path integral for fermions257Exercises258VIITopological ideas25929Topological objects26029.1What is topology?26029.2Kinks262	and the path integral for fermions	255
28.3 The path integral for fermions25728.3 The path integral for fermions257Exercises258VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	28.1 Grassmann numbers	255
Exercises251Exercises258VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	28.2 Coherent states for fermions	257
VII Topological ideas25929 Topological objects26029.1 What is topology?26029.2 Kinks262	28.3 The path integral for fermions	257
VIITopological ideas25929Topological objects26029.1What is topology?26029.2Kinks262		258
29 Topological objects26029.1 What is topology?26029.2 Kinks262		259
29.1 What is topology? 260 29.2 Kinks 262		
29.2 Kinks 262		
	29.3 Vortices	262
Exercises 266		

30	Top	ological field theory	267
	30.1	Fractional statistics à la Wilczek:	
		the strange case of anyons	267
	30.2	Chern–Simons theory	269
	30.3	Fractional statistics from Chern–Simons theory	271
	Exer	rcises	272
V	III	Renormalization: taming the infinite	273
31	Ren	ormalization, quasiparticles and the Fermi surface	274
		Recap: interacting and non-interacting theories	274
		Quasiparticles	276
		The propagator for a dressed particle	277
		Elementary quasiparticles in a metal	279
		The Landau Fermi liquid	280
		rcises	284
32	Ren	ormalization: the problem and its solution	285
	32.1	The problem is divergences	285
	32.2	The solution is counterterms	287
	32.3	How to tame an integral	288
	32.4	What counterterms mean	290
	32.5	Making renormalization even simpler	292
	32.6	Which theories are renormalizable?	293
	Exer	rcises	294
22	Don	ormalization in action:	
99			205
		pagators and Feynman diagrams	295
	33.1	How interactions change the propagator in perturbation	005
	00.0	theory	295
		The role of counterterms: renormalization conditions	297
		The vertex function	298
	Exer	cises	300
34	The	renormalization group	302
		The problem	302
		Flows in parameter space	304
		The renormalization group method	305
		Application 1: asymptotic freedom	307
		Application 2: Anderson localization	308
		Application 3: the Kosterlitz–Thouless transition	309
		cises	
	Exer	cises	312
35	Ferr	omagnetism: a renormalization group tutorial	313
		Background: critical phenomena and scaling	313
		The ferromagnetic transition and critical phenomena	315
	Exer	-	320

IX	Putting a spin on QFT	321
36	he Dirac equation	322
	5.1 The Dirac equation	322
	5.2 Massless particles: left- and right-handed wave functions	323
	5.3 Dirac and Weyl spinors	327
	6.4 Basis states for superpositions	330
	5.5 The non-relativistic limit of the Dirac equation	332
	xercises	334
37	low to transform a spinor	336
	7.1 Spinors aren't vectors	336
	7.2 Rotating spinors	337
	7.3 Boosting spinors	337
	7.4 Why are there four components in the Dirac equation?	339
	xercises	340
38	he quantum Dirac field	341
	3.1 Canonical quantization and Noether current	341
	8.2 The fermion propagator	343
	8.3 Feynman rules and scattering	345
	8.4 Local symmetry and a gauge theory for fermions	346
	xercises	347
39	rough guide to quantum electrodynamics	348
	0.1 Quantum light and the photon propagator	348
	0.2 Feynman rules and a first QED process	349
	0.3 Gauge invariance in QED	351
	xercises	353
40	ED scattering: three famous cross-sections	355
	0.1 Example 1: Rutherford scattering	355
	0.2 Example 2: Spin sums and the Mott formula	356
	0.3 Example 3: Compton scattering	357
	0.4 Crossing symmetry	358
	xercises	000
41	he renormalization of QED and two great results	
	1.1 Renormalizing the photon propagator: dielectric vacuum	361
	1.2 The renormalization group and the electric charge	364
	1.3 Vertex corrections and the electron <i>g</i> -factor	365
	xercises	368
4.34	7.1 The symmetries of Nature before symmetry breaking	
X of	Some applications from the world ondensed matter	
OI		009
42	uperfluids	370
	2.1 Bogoliubov's hunting license	370

	42.2 Bogoliubov's transformation	
	42.3 Superfluids and fields	374 377
	42.4 The current in a superfluid Exercises	379
	Exercises	519
43	The many-body problem and the metal	380
	43.1 Mean-field theory	380
	43.2 The Hartree–Fock ground state energy of a metal	383
	43.3 Excitations in the mean-field approximation	386
	43.4 Electrons and holes	388
	43.5 Finding the excitations with propagators	389
	43.6 Ground states and excitations	390
	43.7 The random phase approximation	393
	Exercises	398
44	Superconductors	400
	44.1 A model of a superconductor	400
	44.2 The ground state is made of Cooper pairs	402
	44.3 Ground state energy	403
	44.4 The quasiparticles are bogolons	405
	44.5 Broken symmetry	406
	44.6 Field theory of a charged superfluid	407
	Exercises	409
45	The fractional quantum Hall fluid	411
	45.1 Magnetic translations	
	45.2 Landau Levels	
	45.3 The integer quantum Hall effect	
	45.4 The fractional quantum Hall effect	417
	Exercises	421
X		
of	particle physics	423
46	Non-abelian gauge theory	424
	46.1 Abelian gauge theory revisited	424
	46.2 Yang–Mills theory	
	10.0	428
	46.4 Breaking symmetry with a non-abelian gauge theory	430
		432
47	The Weinberg–Salam model	433
	47.1 The symmetries of Nature before symmetry breaking	434
	47.2 Introducing the Higgs field	
	47.3 Symmetry breaking the Higgs field	
	47.4 The origin of electron mass	439
	47.5 The photon and the gauge bosons	
	Exercises	
		110

48	Majorana fermions	444
	48.1 The Majorana solution	444
	48.2 Field operators	446
	48.3 Majorana mass and charge	447
	Exercises	450
49	Magnetic monopoles	451
	49.1 Dirac's monopole and the Dirac string	451
	49.2 The 't Hooft–Polyakov monopole	453
	Exercises	456
50	Instantons, tunnelling and the end of the world	457
	50.1 Instantons in quantum particle mechanics	458
	50.2 A particle in a potential well	459
	50.3 A particle in a double well	460
	50.4 The fate of the false vacuum	463
	Exercises	466
A	Further reading	467
в	Useful complex analysis	473
	B.1 What is an analytic function?	473
	B.2 What is a pole?	474
	B.3 How to find a residue	474
	B.4 Three rules of contour integrals	475
	B.5 What is a branch cut?	477
	B.6 The principal value of an integral	478

Index