Contents

List of Contributors XIII Preface XVII

Part One Medicinal Chemistry 1

1	Organometallic Complexes as Enzyme Inhibitors: A Conceptual
	Overview 3
	Philipp Anstaett and Gilles Gasser
1.1	Introduction 3
1.2	Organometallic Compounds as Inert Structural Scaffolds for Enzyme Inhibition <i>3</i>
1.3	Organometallic Compounds Targeting Specific Protein Residues 11
1.4	The Bioisosteric Substitution 14
1.5	Novel Mechanisms of Enzyme Inhibition with Organometallic
	Compounds 19
1.6	Organometallic Compounds as Cargo Delivers of Enzyme
	Inhibitors 25
1.7	Organometallic Enzyme Inhibitors for Theranostic Purposes 30
1.8	Conclusion 34
	Acknowledgments 35
	Abbreviations 35
	References 36
2	The Biological Target Potential of Organometallic Steroids 43
-	Gérard Jaouen, Siden Top, and Michael J. McGlinchey
2.1	Introductory Note on Nuclear Receptors 43
2.1.1	Early History 43
2.1.2	Primary Structure of Nuclear Receptors 44
2.1.3	Estrogen Receptors 45
2.1.4	Androgens 45
2.1.5	Glucocorticoids 46
2.1.6	Progesterone and Progestogens 46

V

VI Contents

- 2.1.7 Mineralocorticoids and Aldosterone 46
- 2.1.8 Selective Modulators of Nuclear Receptors 47
- 2.1.8.1 Selective Estrogen Receptor Modulators (SERMs) 47
- 2.1.8.2 Selective Androgen Receptor Modulators (SARMs) 48
- 2.1.8.3 Selective Progesterone Receptor Modulators (SPRMs) 48
- 2.1.9 Mechanism of Action of Nuclear Receptors 48
- 2.1.10 Endocrine Disruptors 50
- 2.2 Steroids and Organometallics: An Overview of the Transitional Period from the Use of Organometallics in Synthesis to the Emergence of Bioorganometallics 53
- 2.2.1 Early Examples of Organometallic Estradiol Derivatives with Biological Potential: Modified Hormone Shown to Bind to Estrogen Receptor α 56
- 2.2.2 Examples of Estrogens Modified by Organometallics at the 11β -Position 62
- 2.2.3 Targeting Prostate Cancer with Organometallic Androgens and Antiandrogens 64
- 2.2.4 Approach Toward Organometallic Radiopharmaceuticals 66
- 2.2.4.1 Steroidal Derivatives 66
- 2.2.4.2 Nonsteroidal Complexes , 73
- 2.3 Epilog 75 Acknowledgments 76 References 76
- 3 Chirality in Organometallic Anticancer Complexes 85 María J. Romero and Peter J. Sadler
- 3.1 Introduction 85
- 3.2 Chirality in Arene Complexes 87
- 3.3 CIP System for the Nomenclature of Chiral-at-Metal Arene Complexes *89*
- 3.4 Chiral Organometallic Complexes as Anticancer Agents 90
- 3.4.1 Chiral Carbene Complexes 90
- 3.4.2 Chiral Metallocene Complexes 91
- 3.4.3 Chiral Half-Sandwich Arene Complexes 93
- 3.4.4 Chirality at Metal in Supramolecular Complexes 97
- 3.5 Half-Sandwich Complexes with Chiral Metal Centers 99
- 3.5.1 Factors Influencing the Chirality at the Metal Center *100*
- 3.5.1.1 Use of Chiral Ligands for Chiral Resolution at the Metal Center: Diastereoisomerism *100*
- 3.5.1.2 CH-π Interactions: β-Phenyl Effect and Hydrogen Bond Interactions *101*
- 3.5.1.3 Effect of the Temperature, Solvent and Ligands on the Metal Configuration *103*

3.6 Conclusions 110 Acknowledgments 111 References 111

4 Gold Organometallics with Biological Properties 117

Maria Agostina Cinellu, Ingo Ott, and Angela Casini

- 4.1 Introduction: The Use of Gold in Medicine *117*
- 4.2 Anticancer Gold Organometallics and Proposed Biological Targets *117*
- 4.2.1 Cyclometalated Gold(III) Complexes with C,N-Donor Ligands 121
- 4.2.1.1 Types of Cycloaurated Complexes, Synthetic Methods, and Reactivity *122*
- 4.2.1.2 Cycloaurated Complexes with Biological Activities 125
- 4.2.2 Gold N-Heterocyclic Carbene (NHC) Complexes 129
- 4.2.3 Gold Alkynyl Complexes 132
- 4.3 Conclusions and Perspectives 134 List of Abbreviations 135 References 135

5 On the Molecular Mechanisms of the Antimalarial Action of Ferroquine 141

- [•] Faustine Dubar and Christophe Biot
- 5.1 History and Development 141
- 5.2 Mechanism(s) of Action of 4-Aminoquinoline Antimalarials 141
- 5.3 Mechanism(s) of Action of Ferroquine as an Antimalarial *144*
- 5.3.1 Antimalarial Activity 144
- 5.3.2 Metabolic Pathway of Ferroquine 144
- 5.3.3 Redox Properties of FQ 144
- 5.3.4 Basic Properties and Accumulation 147
- 5.3.5 Importance of Redox Properties of Ferrocene on Antimalarial Activity of FQ 155
- 5.3.6 Inhibition of Hemozoin Formation 157
- 5.4 Conclusion 160
 Acknowledgments 161
 List of Abbreviations 161
 References 161

6 Metal Carbonyl Prodrugs: CO Delivery and Beyond 165

- Carlos C. Romão and Helena L.A. Vieira
- 6.1 Introducing CO in Biology *165*
- 6.1.1 Origin 165
- 6.1.2 Biological Action and Targets of CO 166
- 6.1.3 Therapeutic Outlook 166
- 6.1.4 Measuring CO in Biology 167
- 6.2 Therapeutic Delivery of CO 167

- 6.2.1 CO Gas and Inhalation 167
- 6.2.2 Prodrugs for CO Delivery: CO-Releasing Molecules (CORM) 168
- 6.2.2.1 Definitions and Concept 168
- 6.2.3 Early CORMs 169
- 6.2.3.1 Nonmetal-Based CORMs 169
- 6.2.3.2 Metal Carbonyl-Based CORMs 169
- 6.2.4 The Chemical Biology of Early CORMs 171
- 6.2.4.1 $[Ru(CO)_3]^{2+}$ -Based CORMs 171
- 6.2.4.2 [Mo(CO)_n]-Based CORMs 176
- 6.2.4.3 Miscellaneous Biologically Significant Observations on Early-Stage CORMs *177*
- 6.3 Biological and Therapeutic Results Obtained with the Early-Stage CORMs *178*
- 6.3.1 CORM and Inflammatory Response 178
- 6.3.2 Cardioprotective Effects of CORM 180
- 6.3.3 Central Nervous System and CORMs 180
- 6.3.4 Transplantation 181
- 6.3.5 Bactericide Effects of CORMs 181
- 6.3.6 CORMs: Tissue Regeneration and Modulation of Cell Proliferation/ Differentiation 182
- 6.3.7 CORMs and Cancer Therapy? 182
- 6.4 Beyond the Early-Stage CORMs: Strategies for Finding New Candidates *183*
- 6.4.1 Evaluation of CO Release from CORMs 184
- 6.4.2 Light Activated or photoCORMs 185
- 6.4.3 Chemically Activated CORMs 187
- 6.4.4 Bioactivated or Enzyme-Triggered CORMs (ET-CORMs) 191
- 6.5 Intracellular Detection of CORMs, Mechanistic Studies, and Other Unanswered Questions *192*
- 6.6 Designing Pharmacologically Useful, Drug-like CORMs 193
- 6.6.1 The First Drug-like CORM 195
- 6.7 Final Remarks and Perspectives 196List of Abbreviations 196References 198
- 7 Dinitrosyl Iron Complexes with Natural Thiol-Containing Ligands: Physicochemistry, Biology, and Medicine 203 Anatoly F. Vanin
- 7.1 Introduction 203
- 7.2 The History of Detection and Identification of DNIC with Thiol-Containing Ligands in Microorganisms and Animal Tissues 204
- 7.3 Physicochemistry of DNIC with Natural Thiol-Containing Ligands 208

- 7.3.1 Mono- and Binuclear forms of DNIC with Natural Thiol-Containing Ligands 208
- 7.3.2 Two Approaches to the Synthesis of DNIC with Natural Thiol-Containing Ligands 209
- 7.3.3 Mechanisms of Formation of DNIC with Natural Thiol-Containing Ligands *210*
- 7.3.4 The Electronic and Spatial Structures of DNIC with Thiol-Containing Ligands *212*
- 7.3.5 DNIC with Thiol-Containing Ligands as NO and NO⁺ Donors 213
- 7.4 Biological Effects of DNIC with Thiol-Containing Ligands *219*
- 7.4.1 S-Nitrosating Effect of DNIC with Thiol-Containing Ligands 219
- 7.4.2 Vasodilator and Hypotensive Effects of DNIC with Thiol-Containing Ligands 220
- 7.4.3 Inhibiting Effect of DNIC with Thiol-Containing Ligands on Platelet Aggregation 224
- 7.4.4 DNIC with Thiol-Containing Ligands Increase Erythrocyte Elasticity 225
- 7.4.5 DNIC with Thiol-Containing Ligands Accelerate Skin Wound Healing in Animals 225
- 7.4.6 Erective Activity of DNIC 226
- 7.4.7 DNIC and Apoptosis 227
- 7.4.8 DNIC with Glutathione Inhibits the Development of Experimental Endometriosis in Rats 230
- 7.4.9 Other Examples of Biological Effects of DNIC with Thiol-Containing Ligands 232
- 7.5 DNIC with Thiol-Containing Ligands as a Basis in the Design of Drugs with a Broad Range of Therapeutic Activities 233
 List of Abbreviations 234
 Acknowledgments 235
 References 235

Part Two Metalloproteins, Catalysis, and Energy Production 239

8 The Bioorganometallic Chemistry of Hydrogenase 241

Ryan D. Bethel and Marcetta Y. Darensbourg

- 8.1 Introduction 241
- 8.1.1 Hydrogenase 241
- 8.1.2 The Chemistry of Hydrogen 243
- 8.1.3 Dihydrogen Metal Complexes 244
- 8.1.4 First Coordination Sphere Ligands 247
- 8.2 Structure and Function 247
- 8.2.1 The Active Sites of the Hydrogenases 247
- 8.2.1.1 [NiFe]- and [FeFe]-Hydrogenase 247
- 8.2.1.2 [Fe]-Hydrogenase 250

- Contents
 - 8.2.2 The Mechanisms of the Hydrogenases 251
 - 8.3 Natural Biosynthesis and Synthetic Analogs of the Active Sites 253
 - 8.3.1 Natural Biosynthesis of Hydrogenase Active Sites 253
 - 8.3.1.1 Biosynthesis of [NiFe]-Hydrogenase 254
 - 8.3.1.2 Biosynthesis of [FeFe]-Hydrogenase 255
 - 8.3.2 Synthetic Analogs 256
 - 8.3.2.1 Models of the [NiFe]-Hydrogenase Active Site 256
 - 8.3.2.2 Models of the [FeFe]-Hydrogenase Active Site 259
 - 8.3.2.3 Models of the [Fe]-Hydrogenase Active Site 263
 - 8.4 Comments and Conclusion 265 References 268
 - 9 Bio-Organometallic Systems for the Hydrogen Economy: Engineering of Electrode Materials and Light-Driven Devices 273
 - Murielle Chavarot-Kerlidou, Pascale Chenevier, and Vincent Artero
 - 9.1 Introduction 273
 - 9.2 Electrode Materials for Hydrogen Evolution and Uptake 274
 - 9.2.1 Electrode Materials-Based on Hydrogenases 274
 - 9.2.2 Hydrogen Fuel Cell Electrodes Based on Hydrogenases 277
 - 9.2.3 Electrode Materials Based on Bio-inspired Molecular Catalysts 279
 - 9.2.3.1 Covalent Attachment of Catalyst to Electrode Material 279
 - 9.2.3.2 Noncovalent Attachment of Catalyst to Electrode Material via $\pi \pi$ Stacking Interaction 283
 - 9.3 Light-Driven Systems for Hydrogen Evolution 284
 - 9.3.1 Biological and Biohybrid Systems 286
 - 9.3.2 Bio-inspired Catalysis Approaches 288
 - 9.3.2.1 Iron-Based Catalysts 289
 - 9.3.2.2 Nickel-Based Catalysts 294
 - 9.3.2.3 First Approaches toward Molecular-Based Photoelectrodes 295
 - 9.4 Artificial Photosynthetic Systems 297
 - 9.5 Summary and Conclusions 298 List of Abbreviations 298 References 299
 - 10 Artificial Metalloenzymes Containing an Organometallic
 - Active Site 305
 - Akira Onoda, Takashi Hayashi, and Michèle Salmain
 - 10.1 Introduction 305
 - 10.2 Dative Anchoring 306
 - 10.2.1 Metalloproteins as Protein Hosts 306
 - 10.2.2 Other Protein Hosts 313
 - 10.3 Supramolecular Anchoring 316
 - 10.3.1 (Strept)avidin as Protein Hosts 316
 - 10.3.2 Antibodies as Protein Hosts 319
 - 10.3.3 Other Protein Hosts 320

x

- 10.4 Covalent Anchoring 321
- 10.5 Mixed Anchoring Modes 326
- 10.5.1 Supramolecular + Covalent Anchoring 326
- 10.5.2 Supramolecular + Dative Anchoring 327
- 10.5.3 Dative + Covalent Anchoring 327
- 10.6 Peptide Scaffolds 328
- 10.7 Summary and Outlook 332 List of Abbreviations 332 References 333

Part Three Bioanalysis 339

- 11 Organometallic Bioprobes for Cellular Imaging 341 Emanuela Licandro, Monica Panigati, Michèle Salmain, and Anne Vessières
- 11.1 Introduction 341
- 11.1.1 Definition of Organometallic Bioprobes 342
- 11.1.2 Comparison of Different Imaging Techniques 343
- 11.2 Luminescence 346
- 11.2.1 Photophysical Properties of an Ideal Fluorophore for CellImaging 347
- 11.2.2 Emission Properties of the Main Classes of Organometallic Complexes 348
- 11.2.3 Other Advantages in the Use of Organometallic Complexes for Luminescence Imaging 351
- 11.2.4 Time-Resolved Techniques 352
- 11.2.5 Rhenium 352
- 11.2.5.1 Mononuclear Rhenium Complexes 352
- 11.2.5.2 Dinuclear Rhenium Complexes 360
- 11.2.5.3 Bimodal Rhenium Agents 362
- 11.2.6 Iridium 362
- 11.2.6.1 Simple Organometallic Iridium Complexes 362
- 11.2.6.2 Iridium Bioconjugates 365
- 11.2.7 Rhodium 367
- 11.2.7.1 Simple Organometallic Rhodium Complexes 367
- 11.2.7.2 Rhodium Bioconjugates 367
- 11.2.8 Platinum 368
- 11.2.8.1 Confocal Fluorescence Microscopy Imaging with Platinum Complexes with One or Two Photon Excitation *368*
- 11.2.8.2 Time-Resolved Imaging with Platinum Complexes 370
- 11.2.9 Gold 371
- 11.2.9.1 Simple Organometallic Gold Complexes 371
- 11.2.9.2 Gold Bioconjugates 372
- 11.3 Vibrational Spectroscopy 372
- 11.3.1 Infrared Microscopy 374

XII Contents

- 11.3.2 Bimodal Detection (by Infrared and Luminescence) 377
- 11.3.3 AFM-IR Spectroscopy 378
- 11.3.4 Raman Spectromicroscopy 379
- 11.4 Miscellaneous 381
- 11.4.1 Nanoimaging Based on X-Ray Fluorescence 381
- 11.4.2 Ferrocene-Based Fluorescent Probe 382
- 11.5 Conclusions 383 Acknowledgments 384 Abbreviations 384 References 386

Index 393