Contents

1 INTRODUCTION	7
1.1 Principle of prestressed concrete	7
1.2 History of prestressed concrete	
1.3 Structural behaviour of prestressed concrete	9
2 MATERIAL PROPERTIES	
2.1 Concrete	
2.1.1 Composition of concrete mix	
2.1.2 Stress-strain relationship	
2.1.3 Tri-axial stress conditions	
2.1.4 Fatigue properties of concrete	
2.1.5 Modulus of elasticity	
2.1.6 Ageing of concrete	
2.1.7 Creep and shrinkage of concrete	
2.1.8 Components of concrete strain	
2.1.9 Calculation of strain in concrete under constant stress	
2.1.11 Selected rheological models	
2.3 Prestressing reinforcement	
2.3.1 Production and basic characteristics of prestressing reinforcement	
2.3.2 Relaxation of prestressing reinforcement	
2.3.3 Fatigue properties of prestressing reinforcement	
2.3.4 Bond between prestressing reinforcement and concrete	
2.4 Grout	
	2.2
3 TECHNOLOGY OF PRESTRESSED CONCRETE	.34
3.1 Basic terminology	
3.2 Pre-tensioned prestressed concrete	.35
3.3 Post-tensioned prestressed concrete	.39
3.3.1 Bonded multi-strand prestressing system	.39
3.3.2 Unbonded single-strand prestressing systems	. 46
3.3.3 Prestressing systems using prestressing bars	
3.3.4 Prestressing systems with external unbonded reinforcement	
3.3.5 Wire wound concrete structures and circumferential prestressing	. 50
4 LOSSES OF PRESTRESS	
4.1 Loss of prestressing due to friction	
4.2 Anchorage set loss	
4.2.1 Anchorage set loss with friction not taken into account	
4.2.2 Anchorage set loss when tendon is stressed from one end only	
4.2.3 Anchorage set loss when tendon is stressed from both ends	
4.3 Loss of prestressing due to immediate elastic strain in concrete	
4.3.1 Loss of prestressing due to immediate elastic strain in concrete at stressing	
4.3.2 Loss of prestressing due to sequential stressing	
4.3.3 Loss of prestressing due to elastic strain in concrete resulting from external load.	. 69
4.4 Loss of prestressing due to relaxation of prestressing reinforcement	. 69

4.5	Loss of prestressing due to deformation of end abutments of stressing bed 73		
4.6	Loss due to differences in the temperature of the prestressing reinforcement		
	and stressing bed	74	
4.7	Draw-in loss of prestressing	75	
4.8	Loss of prestressing due to creep and shrinkage of concrete	76	
-	REFECTS OF PRESTRESSING ON CONCRETE ELEMENTS AND		
5	EFFECTS OF PRESTRESSING ON CONCRETE ELEMENTS AND	70	
- 1	STRUCTURES, DESIGN OF PRESTRESSING		
5.1	Action stages of prestressed structure		
5.2	Equivalent load method	01	
5.2.			
	3 Beams with variable cross-section		
5.3	Statically indeterminate effects of prestressing		
5.4	Concordant tendon		
5.5	Linear transformation of a tendon		
5.6	Design of prestressing by using the load balancing method		
5.0	Design of prestressing by using the load balancing method	90	
6	LIMITATION OF STRESSES DUE TO SERVICE LOAD, LIMITING		
U	ZONE FOR THE LOCATION OF THE TENDON	04	
6.1	Limitation of normal stresses due to service load effects		
6.2	Crack resistance		
6.3	Limiting zone for the location of the tendon		
6.4	Limiting zone for the ressure line		
0.4	Limiting zone for the pressure me	100	
7	STRUCTURAL ANALYSIS OF SEGMENTALLY CONSTRUCTED		
C.C.	PRESTRESSED STRUCTURES	102	
7.1	Properties of modern segmentally constructed structures		
7.2	Non-homogeneity of structures		
7.3	Closed form solution of rheological effects on the structure		
7.4	Time discretisation method		
7.5	Simplified methods for the analysis of rheological effects on structures	114	
7.6	Time-dependent analysis of prestressed concrete structures		
7.6.	1 Structural analysis, static model	116	
7.6.	2 Modelling of changes in the configuration of structures	118	
7.6.			
7.6.	4 Calculation procedure	119	
	bed by		
8	ULTIMATE RESISTANCE OF ELEMENTS SUBJECTED TO AXIAL		
	FORCE AND BENDING MOMENT	121	
8.1	Prestressed member subjected to tensile axial load	121	
8.2	Ultimate resistance of cross-section subjected to flexure using the state		
	of decompression	125	
8.2.	1 Determination of the decompression stress in the cross-section subjected to fle	xure.	
	2 Determination of ultimate resistance of the cross-section subjected to flexure		
8.2.	3 Universality of solution	131	
8.3	Ultimate resistance of cross-sections subjected to flexure with regard		
	to the initial stress-state of the cross-section	132	
8.4	Secondary effect of prestressing in the ultimate limit state of the structure	134	

9	ELEMENTS SUBJECTED TO SHEAR AND TORSION	136
9.1	Loading of prestressed elements	136
9.2	Analysis of stress-state on condition of elastic behaviour	137
9.3	Ultimate plastic resistance of prestressed concrete members	
9.4	Interaction of internal forces	146
10	ANALYSIS OF THE ANCHORAGE ZONE	149
10.1	Stress in the anchorage zone	149
10.	1.1 Post-tensioned anchorage zones	
10.	1.2 Pretensioned anchorage zones	
10.2	Calculation model and check of zones under anchors	
10.3	Reinforcement of the anchorage zone	156
11	SERVICEABILITY LIMIT STATES	158
11.1	Limitation of stress	
11.2		
	2.1 Tensile stresses in the concrete after cracking	
11.	2.2 Calculation of crack width	
11.3	Deflection control	
		100
12	ADDENDUM A – PRINCIPLES OF PLASTIC ANALYSIS USIN	G
	STRUT AND TIE MODEL	166
12.1	Extremum principles explained in laymen's terms	166
12.2	Analysis of concrete structures using the strut and tie model	167
12.		
12.		
12.	2.3 Calculation of internal forces	169
12.	2.4 Sizing of ties and struts	169
12.	2.5 Model optimisation	171
12.	2.6 Check that detailing provisions are followed	171
13	SYMBOLS	172
13.1	Latin letters	172
13.2	Greek letters	174
14	LITERATURE	177
14.1	Monographs and textbooks	
14.2	Technical papers	
14.3	Standards and regulations	
14.4	Computer programs	