CONTENTS

Contributors		
Pre	eface	xiii
1.	Genome Engineering and Agriculture: Opportunities and Challenges	1
	Nicholas J. Baltes, Javier Gil-Humanes, and Daniel F. Voytas	
	1. Introduction	2
	2. Genome Editing in Plants: Potential DNA Modifications	3
	3. Agricultural Demands and Genome Editing Successes	8
	4. Creating Healthier and More Nutritious Food	12
	5. Challenges and Future Outlook	15
	6. Concluding Thoughts	21
	References	21
2.	Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean	27
	Doane Chilcoat, Zhan-Bin Liu, and Jeffry Sander	
	1. Introduction	28
	2. Examples of CRISPR/Cas for Crop Improvement in Maize	31
	3. Examples of CRISPR/Cas for Crop Improvement in Soybean	40
	4. Looking Forward	44
	Acknowledgments	45
	References	45
2	Use of Zinc-Finger Nucleases for Crop Improvement	47
٥.	John P. Davies, Sandeep Kumar, and Lakshmi Sastry-Dent	47
	1. Introduction	48
	2. Why Use ZFNs?	50
	3. Plant Genome Editing Using ZFNs	51
	4. Targeted Gene Editing5. Enhancing the Efficiency of Genome Editing	55
	5. Enhancing the Efficiency of Genome Editing6. Regulatory Framework	56 57
	7. Concluding Statements	
	References	58 58
	Herefelices	30

4.	Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus Donald P. Weeks	65
	1. Introduction	66
	2. Gene Editing in Polyploid Crops	66
	References	77
5.	Gene Editing With TALEN and CRISPR/Cas in Rice	81
	Honghao Bi and Bing Yang	
	1. Introduction	82
	2. Creation of DNA Double-Strand Breaks to Allow Genome Editing	83
	3. Use of TALENs for Gene Editing in Rice	84
	4. Use of CRISPR/Cas9 for Gene Editing in Rice	86
	5. Use of CRISPR/Cpf1 for Gene Editing in Rice	88
	6. Use of Base Editor in Rice	91
	7. Concluding Remarks	92
	References	93
6.	Genome Editing to Improve Abiotic Stress Responses	
	in Plants	99
	Yuriko Osakabe and Keishi Osakabe	
	1. Introduction	99
	2. Optimization of CRISPR/Cas9 System to Generate Mutant Plants	100
	3. Developing a New Allele of a Plant Abiotic Stress-Responsive Gene	104
	4. Development of New Gene Delivery Systems for CRISPR/Cas9	106
	Acknowledgments	107
	References	107
7.	CRISPR/Cas9-Enabled Multiplex Genome Editing	
	and Its Application	111
	Bastian Minkenberg, Matthew Wheatley, and Yinong Yang	
	1. Introduction	112
	2. Strategies to Achieve CRISPR/Cas9-Enabled Multiplex Genome Editing	113
	3. Broad Applications of Multiplex Genome Editing in Plants	121
	4. Conclusion	127
	Acknowledgments	127
	References	128

8.	CRISPR/Cas9-Based Genome Editing in Plants	133
	Yaling Zhang, Xingliang Ma, Xianrong Xie, and Yao-Guang Liu	
	1. Introduction	134
	2. The Mechanism of the CRISPR/Cas9 Nuclease System	136
	3. Analysis of Targeted Mutations Induced by CRISPR/Cas9 in Plants	142
	4. Applications of CRISPR/Cas9 System for Plant Functional Studies	
	and Crop Improvement	144
	5. Concluding Remarks and Perspectives	145
	References	146
9.	On Improving CRISPR for Editing Plant Genes:	
	Ribozyme-Mediated Guide RNA Production and	
	Fluorescence-Based Technology for Isolating	
	Transgene-Free Mutants Generated by CRISPR	151
	Yubing He, Rongchen Wang, Xinhua Dai, and Yunde Zhao	
	1. Production of Cas9 Protein in Plant Cells	153
	2. Production of sgRNA Molecules In Vivo	154
	3. Production of sgRNAs From Ribozyme-Flanked Artificial Gene	157
	4. Efficient Identification of Cas9-Free Plants With the Desired Editing Events	161
	Acknowledgment	164
	References	164
10	. Engineering Molecular Immunity Against Plant Viruses	167
	Syed Shan-e-Ali Zaidi, Manal Tashkandi, and Magdy M. Mahfouz	
	1. Introduction	168
	2. The Use of SSNs for Genome Engineering	170
	3. Viruses for Delivery of Genome-Engineering Reagents	171
	4. Using SSNs to Develop Virus Resistance	175
	5. CRISPR/Cas9-Mediated Virus Interference	176
	6. Developing Resistance Against RNA Viruses	177
	7. Outlook	178
	References	181
11	. Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research	
	in Legumes	187
	Longlong Wang, Longxiang Wang, Yu Zhou, and Deqiang Duanmu	
	1. Introduction	188
	2. Symbiotic Nitrogen Fixation	189

viii	Content

3. Creating Gene Mutations in Legumes	195
4. Applications of CRISPR/Cas9 in Legumes	198
5. Perspectives and Concluding Remarks	205
Acknowledgments	206
References	206
12. Safety, Security, and Policy Considerations for Plant Genome Editing Jeffrey D. Wolt	215
1. Introduction	216
2. Safety and Security Aspects of Genome Editing	220
3. Governance and Regulation of Plant Genome Editing	225
4. Summary and Conclusions	234
References	236
Index	243