BRIEF CONTENTS

0	The Analytical Process	1
1	Chemical Measurements	13
2	Tools of the Trade	29
3	Experimental Error	51
4	Statistics	68
5	Quality Assurance and Calibration Methods	96
6	Chemical Equilibrium	117
7	Activity and the Systematic Treatment of Equilibrium	142
8	Monoprotic Acid-Base Equilibria	162
9	Polyprotic Acid-Base Equilibria	185
10	Acid-Base Titrations	205
	EDTA Titrations	236
12	Advanced Topics in Equilibrium	258
13	Fundamentals of Electrochemistry	279
14	Electrodes and Potentiometry	308
15	Redox Titrations	340
16	Electroanalytical Techniques	361
17	Fundamentals of Spectrophotometry	393

18	Applications	
	of Spectrophotometry	419
19	Spectrophotometers	445
20	Atomic Spectroscopy	479
21	Mass Spectrometry	502
22	Introduction to Analytical Separations	537
23	Gas Chromatography	565
24	High-Performance Liquid Chromatography	595
25	Chromatographic Methods and Capillary Electrophoresis	634
26	Gravimetric Analysis, Precipitation Titrations, and Combustion Analysis	673
27	Sample Preparation	699
	Notes and References NR1	
	Glossary GL1	
	Appendixes AP1	
	Solutions to Exercises S1	
	Answers to Problems AN1	
	Index 11	

CONTENTS

Preface		
0	The Analytical Process	1
	The "Most Important" Environmental	
	Data Set of the Twentieth Century	1
0-1	Charles David Keeling and the Measurement	
	of Atmospheric CO ₂	1
0-2	The Analytical Chemist's Job	6
0-3	General Steps in a Chemical Analysis	11
	Box 0-1 Constructing a Representative Sample	e 12
1	Chemical Measurements	13
	Biochemical Measurements with a	
	Nanoelectrode	13
1-1	SI Units	13
1-2	Chemical Concentrations	16
1-3	Preparing Solutions	19
1-4	Stoichiometry Calculations for	01
1-5	Gravimetric Analysis Introduction to Titrations	21 22
1-5	Box 1-1 Reagent Chemicals and Primary Standards	
1-6	Titration Calculations	24
2	Tools of the Trade	29
	Quartz Crystal Microbalance in	340
2.1	Medical Diagnosis	29
2-1	Safe, Ethical Handling of Chemicals and Waste	30
2-2	The Lab Notebook	31
2-3	Analytical Balance	31
2-4	Burets	35
2-5	Volumetric Flasks	37
2-6	Pipets and Syringes	38
2-7	Filtration	40
2-8	Drying	41
2-9	Calibration of Volumetric Glassware	42
2-10	Introduction to Microsoft Excel®	43
2-11	Graphing with Microsoft Excel	46
	Reference Procedure Calibrating a	10
	50-mL Buret	49
3	Experimental Error	51
	Experimental Error	51
3-1	Significant Figures	51
3-2	Significant Figures in Arithmetic	52
3-3	Types of Error	55
	Box 3-1 Case Study in Ethics: Systematic Error	
	in Ozone Measurement	55
3-4	Propagation of Uncertainty from	
	Random Error	57

	Box 3-2 Keeling's Exquisitely Precise	
	Measurement of CO_2	60
3-5	Propagation of Uncertainty from	00
, ,	Systematic Error	62
	Systematic Error	02
4	Statistics	68
	Is My Red Blood Cell Count High Today?	68
4-1	Gaussian Distribution	68
1-2	Confidence Intervals	73
1-3	Comparison of Means with Student's t	76
	Box 4-1 Choosing the Null Hypothesis in	
	Epidemiology	79
1-4	Comparison of Standard Deviations with	
	the F Test	80
1-5	t Tests with a Spreadsheet	82
1-6	Grubbs Test for an Outlier	83
1-7	The Method of Least Squares	83
1-8	Calibration Curves	87
	Box 4-2 Using a Nonlinear Calibration	
	Curve	88
1-9	A Spreadsheet for Least Squares	89
	Applications of Speterlepheramizery	699.9
5	Quality Assurance and	
	Calibration Methods	96
	The Need for Quality Assurance	96
5-1	Basics of Quality Assurance	97
	Box 5-1 Control Charts	99
5-2	Method Validation	100
	Box 5-2 The Horwitz Trumpet: Variation in	
	Interlaboratory Precision	103
5-3	Standard Addition	106
5-4	Internal Standards	109
5-5	Efficiency in Experimental Design	110
6	Chemical Equilibrium	117
	enonnurandu anecatore ved you	
- 1	Chemical Equilibrium in the Environment	117
5-1	The Equilibrium Constant	118
5-2	Equilibrium and Thermodynamics	119
)-3	Solubility Product	121
	Box 6-1 Solubility Is Governed by More Than	100
	the Solubility Product	122
5-4	Demonstration 6-1 Common Ion Effect	122
)-4	Complex Formation	124
5	Box 6-2 Notation for Formation Constants	124
5-5	Protic Acids and Bases	126
5-7	pH Strengths of Acids and Bases	128
)-7	Strengths of Acids and Bases Demonstration 6-2 The HCl Fountain	130
		131
	Box 6-3 The Strange Behavior of	172
	Hydrofluoric Acid Box 6-4 Carbonic Acid	132 134
	DUA 0-4 CUIDUIICACICI	134

7	Activity and the Systematic	
	Treatment of Equilibrium	142
	Hydrated Ions	142
7-1	The Effect of Ionic Strength on Solubility	
	of Salts	143
	Demonstration 7-1 Effect of Ionic Strength	
	on Ion Dissociation	143
	Box 7-1 Salts with lons of Charge $\geq 2 $	145
7.0	Do Not Fully Dissociate	145
7-2	Activity Coefficients	145
7-3	pH Revisited	149
7-4	Systematic Treatment of Equilibrium	150
	Box 7-2 Calcium Carbonate Mass Balance	
	in Rivers	153
7-5	Applying the Systematic Treatment	
	of Equilibrium	153
	or Equilibrium	155
	the rest	
8	Monoprotic Acid-Base Equilibria	162
	Magnuing all Incide Call Inc.	100
0.1	Measuring pH Inside Cellular Compartments	162
8-1	Strong Acids and Bases	163
	Box 8-1 Concentrated HNO ₃ Is Only Slightly	
	Dissociated	163
8-2	Weak Acids and Bases	165
8-3	Weak-Acid Equilibria	166
	Demonstration 8-1 Conductivity of Weak	100
		107
	Electrolytes	167
	Box 8-2 Dyeing Fabrics and the Fraction of	
	Dissociation	169
8-4	Weak-Base Equilibria	170
8-5	Buffers	171
	Box 8-3 Strong Plus Weak Reacts Completely	174
	Demonstration 8-2 How Buffers Work	176
		170
0		
9	Polyprotic Acid-Base Equilibria	185
	Protoing Are Delyprotic Acide and Desse	105
0.1	Proteins Are Polyprotic Acids and Bases	185
9-1	Diprotic Acids and Bases	186
	Box 9-1 Carbon Dioxide in the Air and Ocean	189
	Box 9-2 Successive Approximations	191
9-2	Diprotic Buffers	193
9-3	Polyprotic Acids and Bases	194
9-4	Which Is the Principal Species?	195
9-5	Fractional Composition Equations	197
9-6	Isoelectric and Isoionic pH	199
10	Box 9-3 Isoelectric Focusing	
	box 9-3 isoelectric rocusing	200
	Demonstration 6-1 common ion thea	
10	Acid-Base Titrations	205
124		
	Acid-Base Titration of a Protein	205
10-1	Titration of Strong Base with Strong Acid	206
10-2	Titration of Weak Acid with Strong Base	208
10-3	Titration of Weak Base with Strong Acid	210
10-4	Titrations in Diprotic Systems	212
10-5	Finding the End Point with a pH Electrode	215
261	Box 10-1 Alkalinity and Acidity	215
	Son to Fridantly and Actually	210

10-0	Finding the End Point with Indicators	219
	Box 10-2 What Does a Negative pH Mean?	220
	Demonstration 10-1 Indicators and the Acidity	
	of CO ₂	221
10-7	2	
	Practical Notes	223
10-8	Kjeldahl Nitrogen Analysis	223
	Box 10-3 Kjeldahl Nitrogen Analysis Behind	
	the Headlines	224
10-9	The Leveling Effect	225
	Calculating Titration Curves with	220
10-10		224
	Spreadsheets	226
	Reference Procedure Preparing Standard	5-0
	Acid and Base	235
11	EDTA Titrations	236
200		
	Ion Channels in Cell Membranes	236
11-1	Metal-Chelate Complexes	237
	Box 11-1 Chelation Therapy and Thalassemia	238
11-2	EDTA	240
11-3	EDTA Titration Curves	243
11-4	Do It with a Spreadsheet	245
11-5		
11-5	Auxiliary Complexing Agents	246
	Box 11-2 Metal Ion Hydrolysis Decreases	
	the Effective Formation Constant for	
	EDTA Complexes	247
11-6	Metal Ion Indicators	249
	Demonstration 11-1 Metal Ion Indicator	
	Color Changes	240
11-7		249
11-/	EDTA Titration Techniques	251
	Box 11-3 Water Hardness	253
29	Medical Diagnosis	
12	Advanced Topics in Equilibrium	258
QE .	and Waste	200
	Acid Rain	258
12-1	General Approach to Acid-Base Systems	259
12-2	Activity Coefficients	262
12-3	Dependence of Solubility on pH	265
12-4	Analyzing Acid-Base Titrations	205
12 1	with Difference Plots	270
	with Difference Flots	270
	Drying	2-8
13	Fundamentals of Electrochemistry	279
	Introduction to Microsoft Excel	270
12.1	Lithium-Ion Battery	279
	Basic Concepts	280
	Box 13-1 Ohm's Law, Conductance,	
	and Molecular Wire	283
13-2	Galvanic Cells	284
	Demonstration 13-1 The Human Salt	
	Bridge	286
13-3	Standard Potentials	
		287
	Nernst Equation	288
	Box 13-2 E° and the Cell Voltage Do	
	Not Depend on How You Write the	
	Cell Reaction	290
	Box 13-3 Latimer Diagrams: How to Find E°	N.C
	for a New Half-Reaction	292
		636

..

13-5	Box 13-4 Concentrations in the	293
		207
12.6	Operating Cell Cells as Chemical Probes	293 295
13-6 13-7	Biochemists Use $E^{\circ'}$	293
13-7	Diochemists Ose E	291
14	Electrodes and Potentiometry	308
	Chem Lab on Mars	308
14-1	Reference Electrodes	309
14-2	Indicator Electrodes	311
	Demonstration 14-1 Potentiometry with an	
	Oscillating Reaction	313
14-3	What Is a Junction Potential?	313
14-4	How Ion-Selective Electrodes Work	314
14-5	pH Measurement with a Glass Electrode	317
	Box 14-1 Systematic Error in Rainwater pH	
	Measurement: The Effect of Junction	
111	Potential	322
14-6	Ion-Selective Electrodes	323
	Box 14-2 Measuring Selectivity Coefficients	704
	for an Ion-Selective Electrode	324
	Box 14-3 How Was Perchlorate Discovered	720
14-7	on Mars?	328 330
14-7	Using Ion-Selective Electrodes Solid-State Chemical Sensors	331
14-0	Sond-State Chemical Sensors	551
15	Redox Titrations	340
	Chemical Analysis of High-Temperature	
	Superconductors	340
15-1	The Shape of a Redox Titration Curve	341
	Box 15-1 Many Redox Reactions Are	
	Atom-Transfer Reactions	342
15-2	Finding the End Point	344
	Demonstration 15-1 Potentiometric Titration of Fe^{2+} with MnO_{4}^{-}	345
15-3	Adjustment of Analyte Oxidation State	348
15-4	Oxidation with Potassium Permanganate	349
15-5	Oxidation with Ce^{4+}	350
15-6	Oxidation with Potassium Dichromate	351
15-7	Methods Involving Iodine	351
	Box 15-2 Environmental Carbon Analysis	
	and Oxygen Demand	352
	Box 15-3 Iodometric Analysis of	
	High-Temperature Superconductors	355
16	Electroanalytical Techniques	361
	outometric Litration of Cyclohesekenengesro	
16-1	How Sweet It Is! Fundamentals of Electrolysis	361 362
10-1	Demonstration 16-1 Electrochemical	302
	Writing	363
16-2	Electrogravimetric Analysis	367
16-3	Coulometry	369
16-4	Amperometry	371
705	Box 16-1 Clark Oxygen Electrode	371
	and the state on goin Liourous	511

	Box 16-2 What Is an "Electronic Nose"?	372
16-5	Voltammetry	376
	Box 16-3 The Electric Double Layer	379
16-6	Karl Fischer Titration of H ₂ O	385
17	Fundamentals of	chouge
	Spectrophotometry	393
	The Ozone Hole	393
17-1	Properties of Light	394
17-2	Absorption of Light	395
	Box 17-1 Why Is There a Logarithmic	
	Relation Between Transmittance and	
	Concentration?	397
ALC: A	Demonstration 17-1 Absorption Spectra	398
17-3	Measuring Absorbance	399
17-4	Beer's Law in Chemical Analysis	400
17-5	Spectrophotometric Titrations	403
17-6	What Happens When a Molecule	10.1
	Absorbs Light?	404
17 7	Box 17-2 Fluorescence All Around Us	407
17-7	Luminescence	408
	Box 17-3 Rayleigh and Raman Scattering	411
18	Applications of Spectrophotometry	419
	Fluorescence Resonance Energy Transfer	
	Biosensor	419
18-1	Analysis of a Mixture	419
18-2	Measuring an Equilibrium Constant:	
	The Scatchard Plot	424
18-3	The Method of Continuous Variation	425
18-4	Flow Injection Analysis and Sequential	
537	Injection	427
18-5 18-6	Immunoassays and Aptamers Sensors Based on Luminescence	431
	Quenching	433
	Box 18-1 Converting Light into Electricity	434
	Box 18-2 Upconversion	437
19	Spectrophotometers	445
	Cavity Ring-Down Spectroscopy: Do You	
	Have an Ulcer?	445
19-1	Lamps and Lasers: Sources of Light	447
	Box 19-1 Blackbody Radiation and	
	the Greenhouse Effect	448
19-2	Monochromators	450
19-3	Detectors	454
	Box 19-2 The Most Important Photoreceptor	456
	Box 19-3 Nondispersive Infrared	100
	Measurement of CO_2 on Mauna Loa	460
19-4	Optical Sensors	461
19-5	Fourier Transform Infrared	23-2
	Spectroscopy	467
19-6	Dealing with Noise	472

20	Atomic Spectroscopy	479
	An Anthropology Puzzle	479
20-1	An Overview	480
	Box 20-1 Mercury Analysis by Cold Vapor	
	Atomic Fluorescence	482
20-2	Atomization: Flames, Furnaces, and Plasmas	482
20-3	How Temperature Affects Atomic	487
20-4	Spectroscopy Instrumentation	487
20-4	Interference	493
20-6	Inductively Coupled Plasma–Mass	120
	Spectrometry	495
	Box 20-2 GEOTRACES	497
21	Mass Spectrometry	502
	Droplet Electrospray	502
21-1	What Is Mass Spectrometry?	502
	Box 21-1 Molecular Mass and Nominal Mass	504
	Box 21-2 How lons of Different Masses Are	
	Separated by a Magnetic Field	504
21-2	Oh, Mass Spectrum, Speak to Me!	507
01.2	Box 21-3 Isotope Ratio Mass Spectrometry	509
21-3 21-4	Types of Mass Spectrometers Chromatography–Mass Spectrometry	512 519
21-4	Box 21-4 Matrix-Assisted Laser	519
	Desorption/Ionization	527
21-5	Open-Air Sampling for Mass Spectrometry	529
22	Introduction to Analytical	-199
200	Separations	537
	Measuring Silicones Leaking from Breast	577
22-1	Implants Solvent Extraction	537 538
22-1	Demonstration 22-1 Extraction with Dithizone	540
	Box 22-1 Crown Ethers and Phase	540
	Transfer Agents	542
22-2	What Is Chromatography?	542
22-3	A Plumber's View of Chromatography	544
22-4	Efficiency of Separation	548
22-5	Why Bands Spread	554
	Box 22-2 Microscopic Description of	195
	Chromatography	558
27		FCF
23	Gas Chromatography	565
	What Did They Eat in the Year 1000?	565
23-1	The Separation Process in Gas	
	Chromatography	565
	Box 23-1 Chiral Phases for Separating	570
	Optical Isomers	570
23-2	Box 23-2 Chromatography Column on a Chip Sample Injection	576 577
23-2	Detectors	579
23-4	Sample Preparation	584
23-5	Method Development in Gas Chromatography	

24	High-Performance Liquid	6.03
	Chromatography	595
	Paleothermometry: How to Measure	
	Historical Ocean Temperatures	595
24-1	The Chromatographic Process	596
	Box 24-1 Monolithic Silica Columns	601
	Box 24-2 Structure of the Solvent–Bonded	
	Phase Interface	604
	Box 24-3 "Green" Technology: Supercritical	
	Fluid Chromatography	606
24-2	Injection and Detection in HPLC	611
24-3	Method Development for Reversed-Phase	617
24-4	Separations Gradient Separations	617 623
24-4	Do It with a Computer	625
24-3	Box 24-4 Choosing Gradient Conditions	025
	and Scaling Gradients	625
	Bas de Crelation Therapy pud BinatoRino	238
25	Chromatographic Methods	0.42
	Chromatographic Methods and Capillary Electrophoresis	634
	Capillary Electrochromatography	634
25-1	Ion-Exchange Chromatography	635
25-2	Ion Chromatography	642
168	Box 25-1 Surfactants and Micelles	645
25-3	Molecular Exclusion Chromatography	647
25-4	Affinity Chromatography	649
	Box 25-2 Molecular Imprinting	650
25-5	Hydrophobic Interaction Chromatography	650
25-6	Principles of Capillary Electrophoresis	650
25-7	Conducting Capillary Electrophoresis	657 665
25-8	Lab-on-a-Chip: Probing Brain Chemistry	005
26	Gravimetric Analysis, Precipitation	0542
	Titrations, and Combustion	
	Analysis	673
	notes a presentation of the state up the of her	010
	The Geologic Time Scale and Gravimetric	
26.1	Analysis	673 674
26-1 26-2	Examples of Gravimetric Analysis Precipitation	676
20-2	Demonstration 26-1 Colloids and Dialysis	677
26-3	Examples of Gravimetric Calculations	680
26-4	Combustion Analysis	682
26-5	Precipitation Titration Curves	685
26-6	Titration of a Mixture	689
26-7	Calculating Titration Curves with a	16
010	Spreadsheet	690
26-8	End-Point Detection	691
	Demonstration 26-2 Fajans Titration	692
27	Sample Preparation	699
4	and exchange excerning to survey and the second	
07.1	Cocaine Use? Ask the River	699
27-1	Statistics of Sampling	701
27-2 27-3	Dissolving Samples for Analysis Sample Preparation Techniques	705 710
21-5	Sumpto i reputation reeninques	/10

Notes and References						
Gl	Glossary					
Ap	Appendixes					
A. B. C. D.	Logarithms and Exponents Graphs of Straight Lines Propagation of Uncertainty Oxidation Numbers and Balancing Redox	AP1 AP2 AP3				
E.	Equations Normality	AP5 AP8				
F. G.	Solubility Products Acid Dissociation Constants	AP9 AP11				
H. I.	Standard Reduction Potentials Formation Constants	AP20 AP28				
J. K.	Logarithm of the Formation Constant for the Reaction $M(aq) + L(aq) \Longrightarrow ML(aq)$ Analytical Standards	AP31 AP32				
So	lutions to Exercises	S1				
An	Answers to Problems AN					
Ind	dex	11				
Ex	periments	wimen?				

experiments

Experiments are found at the Web site www.whfreeman.com/qca8e

- 0. Green Chemistry
- 1. Calibration of Volumetric Glassware
- Gravimetric Determination of Calcium as CaC₂O₄ • H₂O
- 3. Gravimetric Determination of Iron as Fe₂O₃
- 4. Penny Statistics
- 5. Statistical Evaluation of Acid-Base Indicators
- 6. Preparing Standard Acid and Base
- 7. Using a pH Electrode for an Acid-Base Titration
- 8. Analysis of a Mixture of Carbonate and Bicarbonate
- 9. Analysis of an Acid-Base Titration Curve: The Gran Plot
- 10. Fitting a Titration Curve with Excel Solver
- 11. Kjeldahl Nitrogen Analysis
- 12. EDTA Titration of Ca^{2+} and Mg^{2+} in Natural Waters
- 13. Synthesis and Analysis of Ammonium Decavanadate
- 14. Iodimetric Titration of Vitamin C
- 15. Preparation and Iodometric Analysis of High-Temperature Superconductor
- 16. Potentiometric Halide Titration with Ag⁺
- 17. Electrogravimetric Analysis of Copper
- 18. Polarographic Measurement of an Equilibrium Constant
- 19. Coulometric Titration of Cyclohexene with Bromine
- 20. Spectrophotometric Determination of Iron in Vitamin Tablets
- Microscale Spectrophotometric Measurement of Iron in Foods by Standard Addition
- 22. Spectrophotometric Measurement of an Equilibrium Constant
 22. Spectrophotometric Measurement of an Equilibrium
- 23. Spectrophotometric Analysis of a Mixture: Caffeine and Benzoic Acid in a Soft Drink
 24. Mathematical Acid in a Soft Drink
- 24. Mn²⁺ Standardization by EDTA Titration

25.	Measuring Manganese in Steel by	Spectrophotometry
	with Standard Addition	
-		

- 26. Measuring Manganese in Steel by Atomic Absorption Using a Calibration Curve
- 27. Properties of an Ion-Exchange Resin
- 28. Analysis of Sulfur in Coal by Ion Chromatography
- 29. Measuring Carbon Monoxide in Automobile Exhaust by Gas
- 30. Amino Acid Analysis by Capillary Electrophoresis
- 31. DNA Composition by High-Performance Liquid Chromatography
- 32. Analysis of Analgesic Tablets by High-Performance Liquid Chromatography
- 33. Anion Content of Drinking Water by Capillary Electrophoresis
- 34. Green Chemistry: Liquid Carbon Dioxide Extraction of Lemon Peel Oil

Spreadsheet Topics

	-		
	2-10	Introduction to Microsoft Excel	43
	2-11	Graphing with Microsoft Excel	46
	Proble	em 3-8 Controlling the appearance of a graph	66
	4-1	Average, standard deviation	70
	4-1	Area under a Gaussian curve (NORMDIST)	71
	4-3	t Distribution (TDIST)	80
		4-4 <i>F</i> Distribution (FINV)	81
	4-5	t Test	82
	4-7	Equation of a straight line (SLOPE	
		and INTERCEPT)	85
	4-7	Equation of a straight line (LINEST)	86
	4-9	Spreadsheet for least squares	89
	4-9	Error bars on graphs	90
	5-2	Square of the correlation coefficient,	
		R^2 (LINEST)	101
	5-5	Multiple linear regression and experimental	
		design (LINEST)	110
		em 5-15 Using TRENDLINE	113
	7-5	Solving equations with Excel GOAL SEEK	158
		em 7-29 Circular reference	161
		Excel GOAL SEEK and naming cells	181
		Acid-base titration	226
	11-4		245
Problem 11-19 Auxiliary complexing agents			
		in EDTA titrations	256
		em 11-21 Complex formation	256
	12-1	Using Excel SOLVER	261
	12-2	Activity coefficients with the Davies equation	262
	12-4	Fitting nonlinear curves by least squares	272
	12-4	Using Excel SOLVER for more than one	
		unknown	273
	18-1	Solving simultaneous equations with Excel	
		SOLVER	419
	18-1	Solving simultaneous equations by	
		matrix inversion	422
Problem 23-30 Binomial distribution for isotope			
		patterns (BINOMDIST)	593
	24-5	Computer simulation of a chromatogram	625
	26-7	Precipitation titration curves	690