Contents

Acknowledgements	xi
Introduction	xiii
About the Companion Website	xix

PART I: PLANT GENOMES AND GENES

Chapter 1	Plant g	genetic material	3
	1.1	DNA is the genetic material of all living organisms, including plants	3
	1.2	The plant cell contains three independent genomes	8
	1.3	A gene is a complete set of instructions for building an RNA molecule	10
	1.4	Genes include coding sequences and regulatory sequences	11
	1.5	Nuclear genome size in plants is variable but the numbers of protein-coding,	
		non-transposable element genes are roughly the same	12
	1.6	Genomic DNA is packaged in chromosomes	15
	1.7	Summary	15
	1.8	Problems	15
	Refe	rences	16
Chapter 2	The sh	ifting genomic landscape	17
	2.1	The genomes of individual plants can differ in many ways	17
	2.2	Differences in sequences between plants provide clues about gene function	20
	2.3	SNPs and length mutations in simple sequence repeats are useful tools for genome	
		mapping and marker assisted selection	22
	2.4	Genome size and chromosome number are variable	28
	2.5	Segments of DNA are often duplicated and can recombine	30
	2.6	Some genes are copied nearby in the genome	31
	2.7	Whole genome duplications are common in plants	34
	2.8	Whole genome duplication has many effects on the genome and on gene function	37
	2.9	Summary	41
	2.10	Problems	42
	Furtl	her reading	42
	Refe	rences	42
hapter 3	Transp	osable elements	45
	3.1	Transposable elements are common in genomes of all organisms	45
	3.2	Retrotransposons are mainly responsible for increases in genome size	46
	3.3	DNA transposons create small mutations when they insert and excise	52
	3.4	Transposable elements move genes and change their regulation	57

3.5 How are transposable elements controlled?

v

60

vi

	3.6	Summary	60
	3.7	Problems	61
	Refei	rences	61
Chapter 4	Chroma	atin, centromeres and telomeres	63
	4.1	Chromosomes are made up of chromatin, a complex of DNA and protein	63
	4.2	Telomeres make up the ends of chromosomes	66
	4.3	The chromosome middles – centromeres	71
	4.4	Summary	77
	4.5	Problems	77
	Furth	her reading	77
	Refei	rences	77
Chapter 5	Genom	es of organelles	79
	5.1	Plastids and mitochondria are descendants of free-living bacteria	79
	5.2	Organellar genes have been transferred to the nuclear genome	80
	5.3	Organellar genes sometimes include introns	82
	5.4	Organellar mRNA is often edited	82
	5.5	Mitochondrial genomes contain fewer genes than chloroplasts	84
	5.6	Plant mitochondrial genomes are large and undergo frequent recombination	87
	5.7	All plastid genomes in a cell are identical	91
	5.8	Plastid genomes are similar among land plants but contain some structural	
		rearrangements	93
	5.9	Summary	95
	5.10	Problems	95
	Furth	ner reading	95
	Refei	rences	95

PART II: TRANSCRIBING PLANT GENES

Chapter 6	RNA		99
	6.1	RNA links components of the Central Dogma	99
	6.2	Structure provides RNA with unique properties	102
	6.3	RNA has multiple regulatory activities	105
	6.4	Summary	108
	6.5	Problems	108
	Refe	rences	109
Chapter 7	The plant RNA polymerases		
	7.1	Transcription makes RNA from DNA	111
	7.2	Varying numbers of RNA polymerases in the different kingdoms	112
	7.3	RNA polymerase I transcribes rRNAs	114
	7.4	RNA polymerase III recruitment to upstream and internal promoters	116
	7.5	Plant-specific RNP-IV and RNP-V participate in transcriptional gene silencing	117
	7.6	Organelles have their own set of RNA polymerases	117
	7.7	Summary	118
	7.8	Problems	118
	Refe	rences	118

	Con	tents vii
Chapter 8	Making mRNAs - Control of transcription by RNA polymerase II	121
	8.1 RNA polymerase II transcribes protein-coding genes	121
	8.2 The structure of RNA polymerase II reveals how it functions	121
	8.3 The core promoter	123
	8.4 Initiation of transcription	125
	8.5 The mediator complex	123
	8.6 Transcription elongation: the role of RNP-II phosphorylation	128
	8.7 RNP-II pausing and termination	129
	8.8 Transcription re-initiation	130
	8.9 Summary	130
	8.10 Problems	130
	References	130
Chapter 9	Transcription factors interpret <i>cis</i> -regulatory information	133
	9.1 Information on when, where and how much a gene is expressed is codified	by the
	9.2 Identifying regulatory regions requires the use of reporter genes	155
	9.3 Gene regulatory regions have a modular structure	134
	9.4 Enhancers: <i>Cis</i> -regulatory elements or modules that function at a distance	133
	9.5 Transcription factors interpret the gene regulatory code	137
	9.6 Transcription factors can be classified in families	138
	9.7 How transcription factors bind DNA	130
	9.8 Modular structure of transcription factors	143
	9.9 Organization of transcription factors into gene regulatory grids and networ	rks 146
	9.10 Summary	146
	9.11 Problems	146
	More challenging problems	147
	References	147
Chapter 10	Control of transcription factor activity	149
	10.1 Transcription factor phosphorylation	149
	10.2 Protein – protein interactions	151
	10.3 Preventing transcription factors from access to the nucleus	155
	10.4 Movement of transcription factors between cells	156
	10.5 Summary	158
	10.6 Problems	158
	References	158
Chapter 11	Small RNAs	161
chapter 11	11.1 The phenomenon of cosuppression or gene silencing	101
	11.2 Discovery of small RNAs	101
	11.3 Pathways for miRNA formation and function	162
	11.4 Plant siRNAs originate from different types of double stranded RNAs	105
	11.5 Intercellular and systemic movement of small DNAs	100
	11.6 Role of miRNAs in plant physiology and development	108
	11.7 Summary	170
	11.8 Problems	171
	References	1/1
	Notifield	1/2

73
73
73
74
75
75
77
77
78
79
80
81
81
81
1 1 1

PART III: FROM RNA TO PROTEINS

Chapter 13	RNA processing and transport	185
	13.1 RNA processing can be thought of as steps	185
	13.2 RNA capping provides a distinctive 5' end to mRNAs	185
	13.3 Transcription termination consists of mRNA 3'-end formation and	
	polyadenylation	189
	13.4 RNA splicing is another major source of genetic variation	192
	13.5 Export of mRNA from the nucleus is a gateway for regulating which mRN	NAs
	actually get translated	194
	13.6 Summary	196
	13.7 Problems	196
	References	196
Chapter 14	Fate of RNA	199
	14.1 Regulation of RNA continues upon export from nucleus	199
	14.2 Mechanisms for RNA turnover	199
	14.3 RNA surveillance mechanisms	201
	14.4 RNA sorting	202
	14.5 RNA movement	203
	14.6 Summary	204
	14.7 Problems	204
	Further reading	205
	References	205
Chapter 15	Translation of RNA	207
	15.1 Translation: a key aspect of gene expression	207
	15.2 Initiation	209

15.3	Elongation	209
15.4	Termination	210
15.5	Tools for studying the regulation of translation	211
15.6	Specific translational control mechanisms	211

209

		Contents	ix
	15.7 Summary		213
	15.8 Problems		213
	Further reading		214
	References		214
Chapter 16	Protein folding and transport		215
	16.1 The pathway to a protein's function is a complicated matt	er	215
	16.2 Protein folding and assembly		215
	16.3 Protein targeting		218
	16.4 Co-translational targeting		218
	16.5 Post-translational targeting		219
	16.6 Post-translational modifications regulating function		220
	16.7 Summary		222
	16.8 Problems		223
	Further reading		223
	References		224
Chapter 17	Protein degradation		225
	17.1 Two sides of gene expression – synthesis and degradation		225
	17.2 Autophagy, senescence and programmed cell death		225
	17.3 Protein-tagging mechanisms		226
	17.4 The ubiquitin proteasome system rivals gene transcriptio	n	228
	17.5 Summary		231
	17.6 Problems		231
	Further reading		231
	Reference		231
Index			233