Contents

1	Using Matrix Decomposition in Map Similarity Testing					
	Jiří D	vorský, Václav Snášel, and Vít Voženílek				
	1.1	Introduction	1			
	1.2	Singular Value Decomposition	2			
	1.3	Map Similarity	3			
	1.4	Climatic Maps				
	1.5	Experimental Results	5			
		1.5.1 Influence of Accuracy of Matrix Approximation	8			
	1.6	Conclusion	8			
	Refer	rences	9			
2	Char	acteristics of Data from Skewed Distributions	11			
	Zden	Zdeněk Fabián				
	2.1	Introduction	11			
	2.2	Description of Distributions	12			
		2.2.1 Transformation-based Score	12			
		2.2.2 Characteristics of Central Tendency and Dispersion	14			
		2.2.3 Measure of Dependence	15			
		2.2.4 Spectral Density of Time Series	15			
	2.3	Estimates	16			
	2.4	Example: the Beta-prime Distribution				
	2.5	Conclusions	21			
	Refe	rences	22			
3	Complex Tree-Based Classification Models in GIS					
	Jan Klaschka					
	3.1	Introduction	23			
	3.2	Classification Basics	24			
	3.3	Decision (Classification) Trees	24			
	3.4	Forests	28			
		3.4.1 Four Methods of Forest Construction	28			

Con

		3.4.2	Forests and Instability of Trees			
		3.4.3	Software for Forests			
	3.5 Combining Classification Forests					
		3.5.1	Global, Local and Mixed Models			
		3.5.2	Mixed Models – General Framework			
		3.5.3	Model search strategies			
		3.5.4	Empirical experience			
	3.6	Conclus	sion			
	References					
4	Dime	nsionalit	v Reduction via Ordinal Variables Clustering			
•	Hana Řezan.tová, Dušan Húsek, and Michaela Ryšánková					
	4.1 Introduction					
	4.2 Similarity Measures for Ordinal Variables					
	4.3 Methods for Searching Groups of Similar Variables					
	4.4 Basic Algorithms for Fuzzy Clustering and Visualization Res					
	bles of Fuzzy Clustering and Similarity of Fuzzy Clusters					
	4.6 Cluster Number Determination					
	4.7	Applica	tions to Real Data File			
	4.8	Conclus	sion			
	Refer	ences				
5	A rtifi	cial Inte	lligence and GIS. Mutual Meeting and Passing			
5	Vit Voženílek					
	51	Introdu	ction			
	5.2	Intersec	tions of Artificial Intelligence and GIS			
	53	ALand	GIS Convergence			
	54	Goals o	f Al in GIS			
	55	ALand	GIS – Together or Aparl?			
	5.6	Conclus	sions			
	Refer	ences				
	TUTUT					

ii