Contents

Preface XIIIList of Contributors XV

1	An Introduction to Graphene 1
	Konstantinos Spyrou and Petra Rudolf
1.1	Brief History of Graphite 1
1.2	Graphene and Graphene Oxide 2
1.2.1	Preparation of Graphene from Graphene Oxide 3
1.2.2	Isolation of Pristine Graphene Monolayers 5
1.2.3	Large Scale Production of GO by Langmuir-Blodgett Methods
1.2.4	Other Methods of Graphene Production 6
1.3	Characterization of Graphene 9
1.3.1	Microscopic Observation 9
1.3.2	Raman Spectroscopy 11
1.3.3	Thermogravimetric Analysis 12
1.3.4	Optical Properties of Graphene 13
1.3.5	X-Ray Diffraction Pattern 17
	References 18
2	Covalent Attachment of Organic Functional Groups on Pristine
	Graphene 21
	Vasilios Georgakilas
2.1	Introduction 21
2.2	Cycloaddition Reactions 22
2.2.1	1,3-Dipolar Cycloaddition of Azomethine Ylide 22
2.2.1.1	Through a Substituted Aldehyde Pathway 24
2.2.1.2	Through Substituted α Amino Acid Pathway 27
2.2.2	Cycloaddition by Zwitterionic Intermediate 28
2.2.3	Diels-Alder Cycloaddition 29
2.2.4	Nitrene Addition 30
2.2.5	Carbene Addition 35
2.2.6	Aryne Addition 36
2.2.7	Bingel Type Cycloaddition 37

2.3	Addition of Free Radicals 39
2.3.1	Diazonium Salt Reaction 39
2.3.2	Other Radical Additions 42
2.4	Nucleophilic Addition 46
2.5	Electrophilic Addition on Graphene 46
2.6	Organometallic Chemistry of Graphene 48
2.7	Post Functionalization Reactions 50
2.8	Conclusion 55
	References 56
3	Addition of Organic Groups through Reactions with Oxygen
	Species of Graphene Oxide 59
	Vasilios Georgakilas
3.1	Introduction 59
3.1.1	Graphene/Polymer Nanocomposites 60
3.2	The Role of Carboxylic Acids of GO 61
3.2.1	Organic Functionalization through Amide Bond Formation 61
3.2.1.1	Lipophilic Derivatives 61
3.2.1.2	Hydrophilic – Biocompatible Derivatives 62
3.2.1.3	Addition of Chromophores 64
3.2.1.4	Polymer Graphene Composite 69
3.2.2	Esterification of GO 71
3.2.3	Functionalization of GO through Heterocyclic Ring
	Formation 75
3.3	The Role of Hydroxyl Groups of GO 77
3.4	Miscellaneous Additions 78
3.4.1	Reaction of Carboxylic Acid and Hydroxyl Groups with Isocyanate
77777	Derivatives 78
3.4.2	Reaction of Epoxides with Carboxylic Acids or Hydroxyl
	Groups 78
3.4.3	Interaction of Ammonia with Carboxylic Acids and Epoxides of
	GO 80
3.4.4	Enrichment of GO in Carboxylic Acids 81
3.4.5	Addition of Gallium-Phthalocyanine (Ga-Pc) to GO through Ga-O
	Covalent Bond 82
3.5	The Role of Epoxide Groups of GO 83
3.5.1	Nucleophilic Addition of Amine to Epoxides 83
3.5.2	Addition of Chromophores 85
3.5.3	Addition of Polymers 86
3.6	Post Functionalization of GO 87
3.6.1	Post Functionalization of Organically Modified GO via Click
	Chemistry 87
3.6.2	Counter Anion Exchange 89
3.7	Conclusions 90
	References 92

4	Chemical Functionalization of Graphene for Biomedical
	Applications 95
. 1	Cinzia Spinato, Cécilia Ménard-Moyon, and Alberto Bianco
4.1	Introduction 95
4.2	Covalent Functionalization of Graphene Nanomaterials 97
4.2.1	Synthesis of GO and rGO 99
4.2.1.1	Synthesis of Graphene Oxide 99
4.2.1.2	Reduction of Graphene Oxide 99
4.2.2	Functionalization of Graphene Oxide with Polymers 100
4.2.2.1	PEGylated-GO Conjugates 100
4.2.2.2	Covalent Linkage of Biopolymers 103
4.2.3	Tethering of Antibodies 105
4.2.4	Attachment of Nucleic Acids 106
4.2.5	Grafting of Peptides and Enzymes 108
4.2.6	Attachment of Other Organic Molecules and Biomolecules 108
4.3	Non-covalent Functionalization of Graphene 110
4.3.1	Adsorption via π -Stacking 110
4.3.1.1	Adsorption of Drugs 111
4.3.1.2	Adsorption of Pyrene Derivatives 111
4.3.1.3	Non-covalent Interactions with Nucleic Acids and Aptamers 113
4.3.1.4	Immobilization of Enzymes, Proteins, and Other
	Macromolecules 116
4.3.2	Electrostatic and Hydrophobic Interactions 116
4.3.2.1	Coating with Polymers and Biopolymers 116
4.3.2.2	Deposition of Nanoparticles 119
4.3.2.3	Adsorption of Quantum Dots 121
4.4	Graphene-Based Conjugates Prepared by a Combination of Covalent
	and Non-covalent Functionalization 121
4.4.1	Polymer- and Biopolymer-Grafted Graphene Nanomaterials Used as
	Nanocarriers 121
4.4.1.1	Polymer-Functionalized GO for Drug Delivery 122
4.4.1.2	Polymer-Functionalized GO for Gene Delivery 123
4.4.1.3	Chitosan-Functionalized GO 125
4.4.2	GO Functionalized with Targeting Ligands and Antibodies 125
4.4.2.1	Folic Acid-Conjugated GO 125
4.4.2.2	Antibody-Functionalized GO for Radioimaging
7.7.2.2	and Biosensing 127
4.5	Conclusions 129
4.3	
	Acknowledgments 130
	References 130
	Immobilization of Engage and other Biomolecules of Control 130
5	Immobilization of Enzymes and other Biomolecules on Graphene 139
	Ioannis V. Pavlidis, Michaela Patila, Angeliki C. Polydera,
500000	Dimitrios Gournis, and Haralampos Stamatis
5.1	Introduction 139

5.2	Immobilization Approaches 141
5.3	Applications of Immobilized Biomolecules 145
5.3.1	Biosensors 145
5.3.1.1	Glucose Oxidase-Based Biosensors 146
5.3.1.2	Horseradish Peroxidase-Based Biosensors 150
5.3.1.3	Tyrosinase-Based Biosensors 151
5.3.1.4	Cytochrome <i>c</i> -Based Biosensors 152
5.3.1.5	Other Protein/Enzyme Biosensors 152
5.3.1.6	DNA Sensors 152
5.3.1.7	Immunosensors and Aptasensors 154
5.3.2	Biocatalysis 155
5.3.3	Biofuel Cells 159
5.3.4	Drug and Gene Delivery 161
5.4	Interactions between Enzymes and Nanomaterials 162
5.5	Conclusions 165
5.5	Abbreviations 165
	References 166
	References 100
6	Halogenated Graphenes: Emerging Family of Two-Dimensional
127811	Materials 173
	Kasibhatta Kumara Ramanatha Datta and Radek Zbořil
6.1	Introduction 173
6.2	Synthesis of Halogenated Graphenes 174
6.2.1	Fluorographene 175
6.2.1.1	Mechanical or Chemical Exfoliation – from Graphite Fluoride to
0.2.1.1	Fluorographene 175
6.2.1.2	Fluorination of Graphene – from Graphene
	to Fluorographene 175
6.2.2	Nonstoichiometric Fluorinated Graphene and Fluorinated
	Graphene Oxide 175
6.2.3	Other Halogenated Graphenes 178
6.3	Characterization of Halogenated Graphenes 179
6.3.1	Fluorographene 179
6.3.2	Partially Fluorinated and Halogenated Graphenes 183
6.4	Chemistry, Properties, and Applications of Fluorographene and
	Fluorinated Graphenes 184
6.5	Chemistry and Properties of Chlorinated and Brominated
	Graphenes 190
6.6	Other Interesting Properties of Halogenated Graphenes and Their
	Applications 190
6.7	Halogenated Graphene-Graphene Heterostructures – Patterned
	Halogenation 193
6.8	Conclusion and Future Prospects 195
0.0	References 195
	Telefolices 175

7	Noncovalent Functionalization of Graphene 199
	Kingsley Christian Kemp, Yeonchoo Cho, Vimlesh Chandra, and
1111	Kwang Soo Kim
7.1	Noncovalent Functionalization of Graphene – Theoretical
7.1	Background 199
7.1.1	Insight into the π -Interaction of Benzene 200
7.1.2	Adsorption on Graphene 201
7.1.2	Graphene–Ligand Noncovalent Interactions – Experiment 202
7.2.1	
7.2.1	Polycyclic Molecules 202 Biomolecules 205
7.2.3	Polymers 207
7.2.4	Other Molecules 210
7.3	Conclusions 213
	References 213
0	Insurabilization of Matal and Matal Oxida Nanapartislas on
8	Immobilization of Metal and Metal Oxide Nanoparticles on Graphene 219
	Germán Y. Vélez, Armando Encinas, and Mildred Quintana
8.1	Introduction 219
8.2	Graphene Production 219
8.2.1	Graphene Oxide (GO) 220
8.2.2	Functionalized Graphene (f-Graphene) 220
8.2.3	Graphene Growth on Metal Surfaces 220
8.2.4	Micromechanical Cleavage of Graphite 221
8.3	Graphene Functionalized with Metal Nanoparticles (M-NPs) 221
8.3.1	GO-Reducing Approach 221
8.3.1.1	Reduction Assisted by Sonication 222
8.3.2	Anchoring NPs on <i>f</i> -Graphene 223
8.3.2.1	Controlling Size of NPs 226
8.3.3	Applications of M-NPs/Graphene Nanohybrids 227
8.3.3.1	Optoelectronic Devices 227
8.3.3.2	Applications in Catalysis 229
8.3.3.3	Applications in Biology 232
8.4	Graphene Functionalized with Metal Oxide Nanoparticles 233
8.4.1	Lithium Batteries 233
8.4.2	Optical Properties 236
8.4.2.1	Water Splitting 237
8.4.2.2	f-Graphene-POM 238
8.4.3	Photocatalytic Reduction of GO 238
8.5	Graphene Functionalized with Magnetic NPs 242
8.5.1	Magnetic Properties 243
8.5.2	Applications of GO-Mag NPs 246
8.5.2.1	Magnetic Separation of Metals and Pollutants with
0.3.2.1	GO-Mag NPs 247
8.5.2.2	Biomedical Applications of GO-Mag NPs 248
0.3.4.4	Diolitedical Applications of GO-Mag 1413 240

8.6	Conclusions 252
	References 252
9	Functionalization of Graphene by other Carbon Nanostructures 255
	Vasilios Georgakilas
9.1	Introduction 255
9.2	Graphene-C ₆₀ Nanocomposites 255
9.2.1	Covalent Bonding of C ₆₀ on GO 256
9.2.2	Deposition of C ₆₀ on Graphene 256
9.3	Graphene–CNT Hybrid Nanostructures 262
9.3.1	Graphene–CNT Composites by Simple Mixing 264
9.3.2	Graphene-CNTs Hybrid Nanostructures by Direct Development
	of CNTs on Graphene Surface 272
9.4	Graphene–Carbon Nanospheres 274
9.5	Graphene–Carbon Nitride Dots Hybrid Nanocomposite 277
9.6	Conclusions 279
	References 280
10	Doping of Graphene by Nitrogen, Boron, and Other Elements 283
	Achutharao Govindaraj and C.N.R. Rao
10.1	Introduction 283
10.2	Nitrogen-Doped Graphene 284
10.2.1	DC Arcing 284
10.2.2	Heating with Ammonia, Hydrazine, and Other
	Reagents 287
10.2.3	Chemical Functionalization Route 288
10.2.4	Solvothermal Synthesis 289
10.2.5	Chemical Vapor Deposition and Pyrolysis 293
10.2.6	Pyrolysis Methods 300
10.2.7	Other Methods 306
10.3	Boron Doping 320
10.3.1	Mechanical Exfoliation 321
10.3.2	Thermal Annealing 321
10.3.3	Chemical Vapor Deposition 323
10.3.4	Other Methods 326
10.4	BN Doping in Graphene 329
10.5	Doping with Other Elements 334
10.6	Properties and Applications 339
	References 352
11	Layer-by-Layer Assembly of Graphene-Based Hybrid Materials 359
	Antonios Kouloumpis, Panagiota Zygouri, Konstantinos Dimos, and
	Dimitrios Gournis
11.1	Introduction 359
11.2	LbL Graphene-Based Hybrid Films 360

11.2.1	Hybrid Thin Films for Electronics 360
11.2.2	Hybrid Thin Films as Sensors 375
11.2.3	Hybrid Films for Other Applications 383
11.3	Graphene-Based Hybrids through the Langmuir-Blodgett
	Approach 385
11.3.1	Monolayers of Graphene Oxide 385
11.3.2	Nanocomposite Films 389
11.3.3	Applications and Properties of LB Thin Films 390
11.4	Conclusions 397
	References 397
	Index 401