Contents

1 Varieties of Lattices 1
P. Jipsen and H. Rose
1-1 The lattice Λ 1
1-2 Generating sets of varieties 16
1-3 Decidability of equational theories 17
1-4 Equational bases 20
1-5 Amalgamation and absolute retracts 22
1-6 Congruence varieties 25
2 Free and Finitely Presented Lattices 27
R. Freese and J. B. Nation
2-1 Introduction 27
2-2 Preliminaries 27
2-2.1 Day's doubling construction 28
2-3 Finitely presented lattices and the word problem 29
2-3.1 Skolem's solution to the word problem 30
2-3.2 Dean's Theorem 32
2-4 Canonical form 34
2-4.1 Exercises 38
2-5 A structure theorem of Grätzer, Huhn, and Lakser 38
2-6 Covers 41
2-6.1 Exercises 49
2-7 Weak atomicity, the derivative, and coverless lattices 50
2-7.1 Exercises 53
2-8 When is a finitely presented lattice finite? 53
2-8.1 Exercises 55
2-9 McKenzie's example 56
3 Classes of Semidistributive Lattices 59
K. Adaricheva and J. B. Nation
3-1 Definition of semidistributive lattices 59
3-1.1 Introduction and motivation 59
3-1.2 Semidistributive versus modular 60
3-1.3 Finite join-semidistributive lattices 61
3-1.4 Local theorem for the class of join-semidistributive lattices 64
3-1.5 Canonical decompositions in join-semidistributive lattices 67
3-1.6 Homomorphisms in $\mathbf{S D}_{\vee}, \mathbf{S D}_{\wedge}$, and $\mathbf{S D}$ 68
3-1.7 Semidistributive varieties 69
3-1.8 Reprise: equivalent facets of semidistributivity 70
3-2 Lower bounded lattices and upper bounded lattices 71
3-2.1 Finitely generated lower bounded lattices 71
3-2.2 General classes of lower bounded and upper bounded lattices 77
3-2.3 The class of lower bounded lattices 79
3-2.4 The weak Jónsson property 80
3-2.5 The relation D and D-sequences 82
3-2.6 Congruence properties of lower bounded lattices 85
3-2.7 Day's doubling construction and bounded lattices 86
3-3 Representations of finite lower bounded and upper bounded lattices 88
3-4 Varieties and pseudo-varieties of lower bounded lattices 95
3-4.1 Varieties of lower bounded lattices 95
3-4.2 Pseudo-varieties of bounded lattices 98
3-5 Exercises 99
3-6 Problems 101
4 Lattices of Algebraic Subsets and Implicational Classes 103 K. Adaricheva and J. B. Nation
4-1 Lattices of algebraic subsets and associated subclasses 103
4-1.1 Lattices of algebraic subsets in power set lattices 103
4-1.2 Algebraic subsets of complete lattices 106
4-1.3 Congruence semidistributive varieties of algebras 112
4-1.4 Perfect lattices 115
4-2 Closure systems and implications 122
4-2.1 Standard and reduced closure systems 122
4-2.2 Closure operators and implications 127
4-3 Lattices of quasi-equational theories 133
4-3.1 Subalgebras of lattices of algebraic subsets 133
4-3.2 Lattices of quasivarieties versus lattices of quasi-equational theories 136
4-3.3 Congruence lattices of semilattices with operators 142
4-3.4 Representation theorems 145
4-3.5 Atomistic lattices of quasivarieties 148
4-4 Exercises 148
4-5 Problems 150
5 Convex Geometries 153
K. Adaricheva and J. B. Nation
5-1 Matroids, anti-matroids and convex geometries 153
5-2 Finite convex geometries 154
5-3 The anti-exchange property in algebraic closure systems 158
5-4 Largest extension of a finite join-semidistributive lattice 160
5-5 Lattices of algebraic subsets as convex geometries 164
5-6 Convex subsets in Euclidean spaces 164
5-7 Finite join-semidistributive lattices within affine convex ge- ometries 168
5-8 Convex geometries in the lattice of all closure operators 172
5-9 Connection to choice functions with path independence 176
5-10 Exercises 178
5-11 Problems 179
6 Bases of Closure Systems 181
K. Adaricheva and J. B. Nation
6-1 Canonical basis 181
6-2 The D-basis of a finite closure system 187
6-3 Regular bases 192
6-4 Canonical basis and the relation D 194
6-5 Join-semidistributive and $U C$-closure systems 198
6-6 Effective bases of systems without D-cycles 200
6-7 Effective bases of finite convex geometries 207
6-7.1 Convex geometries with the Carousel property 208
6-7.2 Convex geometries without D-cycles 210
6-8 Exercises 212
6-9 Problems 213
7 Permutohedra and Associahedra 215
N. Caspard, L. Santocanale, and F. Wehrung
215
7-1 Origin
7-2 Basic objects 220
7-2.1 Permutohedra 220
7-2.2 Tamari lattices 227
7-3 Notation, terminology, and basic tools 228
7-4 Alternative definitions 230
7-4.1 An alternative definition of the permutohedron 231
7-4.2 Alternative definitions of Tamari lattices, n-vectors 232
7-5 Semidistributivity and boundedness of permutohedra 236
7-5.1 Join- and meet-irreducible elements 236
7-5.2 The table and the arrowed table of a permutohedron 240
7-5.3 The join-dependency relation in permutohedra 243
7-5.4 Minimal join-covers, the OD-graph of permutohedra 246
7-6 Cambrian lattices of type A 248
7-6.1 Basic definitions 248
7-6.2 Join-fitting; Cambrian lattices as retracts of permutohedra 250
7-7 Embedding problems into permutohedra and Tamari lattices 256
7-7.1 The Gazpacho identities 256
7-7.2 U-polarized measures 259
7-7.3 Embedding $\mathrm{B}(m, n)$, for m or n small 261
7-7.4 A large permutohedron with a preimage of $\mathrm{B}(3,3)$ 262
7-7.5 The equational theory of all permutohedra 262
7-8 Exercises 263
7-9 Problems 273
7-10 A gallery of lattices 274
8 Generalizations of the Permutohedron 287
L. Santocanale and F. Wehrung
8-1 Introduction 287
8-2 Permutohedra and Tamari lattices on arbitrary posets 289
8-2.1 The permutohedron on a poset; square-free posets 290
8-2.2 The strong permutohedron on a poset; crown-free posets 292
8-2.3 A Tamari-like lattice defined from any poset 295
8-3 Four lattices and a poset 297
8-3.1 Closure operators 297
8-3.2 Regular closed as Dedekind-MacNeille completion of clopen 302
8-3.3 Posets of regions of central hyperplane arrangements 303
8-3.4 Closure operators of poset and semilattice type 305
8-4 The extended permutohedron on a transitive binary relation 308
8-4.1 Basic properties 308
8-4.2 Semidistributivity and boundedness 310
8-4.3 Lattices of bipartitions 312
8-5 The extended permutohedron on a graph 315
8-5.1 Basic notions 316
8-5.2 Block graphs, trees, and forests 317
8-5.3 Completely join-irreducible elements of $\mathrm{R}(G)$ 321
8-6 The extended permutohedron on a join-semilattice 324
8-7 The closure space associated to distributive direct sums 327
8-7.1 Distributive sums in a poset 327
8-7.2 A closure operator defined on any poset 328
8-7.3 Lattices of clopen subsets of posets 330
8-8 Variants of the permutohedron on a graph 332
8-9 Lattices of clopen subsets of branching posets 334
8-9.1 Fundamental results 334
8-9.2 Branching posets from square-free posets 337
8-9.3 Branching posets from block graphs 338
8-10 Words, multipermutations, and paths 339
8-10.1 Embedding multinomial lattices into permutohedra 340
8-10.2 A closed-open construction yielding multinomial lattices 344
8-11 Pseudo-permutations and linear preorderings on a finite chain 350
8-11.1 Basic definitions 350
8-11.2 The table of a linear preordering 352
8-11.3 The linear preorderings form a lattice 355
8-11.4 Join-irreducible pseudo-permutations 357
8-11.5 Arrow and join-dependency relations in lattices of pseudo-permutations 363
8-12 Exercises 364
8-13 Problems 382
8-14 A gallery of lattices 383
9 Lattice Theory of the Poset of Regions 399
N. Reading
9-1 Basic notions 400
9-1.1 Hyperplane arrangements 400
9-1.2 Polyhedral geometry 401
9-1.3 Regions 402
9-1.4 The poset of regions 405
9-1.5 Faces, rank-two subarrangements, and intervals 407
9-2 Lattice-theoretic shortcuts 410
9-2.1 The BEZ Lemma and some extensions 411
9-2.2 More BEZ-type lemmas 413
9-3 Tight posets of regions 416
9-3.1 Tightness and semidistributivity 417
9-3.2 Simplicial arrangements 422
9-4 Biconvexity and rank-two biconvexity 426
9-4.1 Convexity, biconvexity, and strong biconvexity 426
9-4.2 Rank-two!biconvexity 428
9-5 Lattice congruences for combinatorialists 433
9-5.1 Homomorphisms and congruences 434
9-5.2 Quotient lattices 436
9-5.3 Join-irreducible elements and congruences 439
9-5.4 Forcing among edges and join-irreducible elements 441
9-5.5 Congruences on quotients 444
9-5.6 Semidistributive lattices 446
9-6 Polygonal lattices 448
9-6.1 Congruences on polygonal lattices 450
9-6.2 Quotients of polygonal lattices 454
9-6.3 Polygonality and tightness 454
9-7 Shards 456
9-7.1 Shards and join-irreducible elements 457
9-7.2 Shards and canonical join representations 460
9-7.3 Shards and congruences 461
9-7.4 The shard intersection order 465
9-8 Quotients of posets of regions 467
9-8.1 The geometric viewpoint 467
9-8.2 Canonical join representations 471
9-8.3 Congruences on quotients 472
9-9 Exercises 473
9-10 Notes 482
9-11 Problems 486
10 Finite Coxeter Groups and the Weak Order 489
N. Reading
10-1 Coxeter groups and the weak order 489
10-2 Finite reflection groups 492
10-2.1 Coxeter arrangements are simplicial 493
10-2.2 Generalized reflection groups 495
10-2.3 Finite Coxeter groups and finite reflection groups 497
10-2.4 The classification of finite Coxeter groups 503
10-2.5 Detecting Coxeter arrangements combinatorially 505
10-3 The weak order and the poset of regions 508
10-3.1 The isomorphism 508
10-3.2 Properties of the weak order 512
10-3.3 Combinatorial consequences 513
10-3.4 Root systems and convexity 514
10-4 The Word Problem for finite Coxeter groups 517
10-5 Coxeter groups of type A 519
10-6 Cambrian lattices and sortable elements 524
10-6.1 Cambrian congruences 525
10-6.2 Cambrian lattices of type A 529
10-6.3 Sortable elements 531
10-6.4 Induction on length and rank 535
10-6.5 Sortable elements of type A 537
10-6.6 Sortable elements and the Cambrian fan 539
10-6.7 Coxeter-Catalan combinatorics 540
10-7 Some other lattice quotients of the weak order 543
10-8 Exercises 549
10-9 Notes 556
10-10 Open problems 560
10-11 Acknowledgments for Chapters 9 and 10 561
Bibliography 563
Corrections to STA1 597
Index 598
Author Index 611

