Contents

Preface xv

PART I

INTRODUCTION

1.	General Scheme of Protein Biosynthesis	3
	Further reading 6	
2.	Messenger RNA and the Genetic Code	7
	 2-1 Discovery of mRNA 7 2-2 Deciphering the code 9 2-3 Some features of the code dictionary 14 2-4 Structure of mRNA 15 Primary structure 15 / Functional regions 18 / Folding 21 	
	References 27 Further reading 30	
3.	Transfer RNA and Aminoacyl-tRNA Synthetases	32
	 3-1 Discovery 32 3-2 Structure of tRNA 34 Primary structure 34 / Secondary structure 39 / Tertiary structure 44 	

	 3-3 Aminoacyl-tRNA synthetases 48 3-4 Aminoacylation of tRNA 51 3-5 Specificity of tRNA aminoacylation 55 Specificity for amino acids 55 / Specificity for tRNA 56 References 58 Further reading 60
4.	Ribosomes and Translation
	 4-1 First observations 62 4-2 Localization of ribosomes in the cell 64 4-3 Procaryotic and eucaryotic ribosomes 64 4-4 Sequential readout of mRNA by ribosomes: Polyribosomes 68 4-5 Stages of translation: Initiation, elongation, and termination 70 4-6 Cell-free translation systems 71 References 72 Further reading 74
	Chemical Reactions and the Overall Energy Balance of Protein Biosynthesis

Appendix78Further reading80

PART II

STRUCTURE OF THE RIBOSOME

6. Morphology of the Ribosome	83
 6-1 Size, appearance, and subdivision 6-2 Detailed shape of ribosomal subunits Small subunit 85 / Large subunit 	83 85 87
6-3 Association of subunits into the comp ribosome 90	lete
References 91	
7. Ribosomal RNA	93

7-1 Significance of ribosomal RNA 93

76

	7-2 Ribosomal RNA species 94 High-molecular-mass RNA of the small ribosomal subunit 94 / High-molecular-mass RNA of the large ribosomal subunit 95 / 55 RNA of the large ribosomal subunit 96	
	7-3 Primary and secondary structures 96 16S (18S) RNA 96 / 23S (28S) RNA 103 / 5S RNA 106	
	 7-4 Structural domains and compact folding of RNA molecules 111 16S (18S) RNA 111 / 23S (28S) RNA 114 References 116 Further reading 121 	
8.	Ribosomal Proteins	123
	 8-1 Diversity: Nomenclature 123 8-2 Primary structures 126 8-3 Three-dimensional structures 129 8-4 Protein complexes 132 8-5 Interactions with ribosomal RNA 134 References 138 Further reading 140 	
9.	Mutual Arrangement of Ribosomal RNA and Proteins (Quaternary Structure)	142
	 9-1 Peripheral localization of proteins on the RNA core 142 9-2 Topography of proteins 145 Identification of neighboring proteins 145 / Measuring distances between proteins 147 / Immuno-electron microscopy 148 	
	9-3 Topography of RNA 153 Immuno-electron microscopy 153 / Assignment to protein topography 154	
	9-4 Quaternary structure 157 References 158 Further reading 160	

10. Structural Transformations of Ribosomes (in vitro) 10-1 Dissociation of ribosomes into subunits 162 10-2 Unfolding of subunits 167 10-3 Disassembly and reassembly of subunits 173 Disassembly 173 / Reassembly 177 References 181

PART III

FUNCTIONING OF THE RIBOSOME

11. Functional Activities and Functional Sites of the Ribosome 187 11-1 Working cycle of the ribosome 187 11-2 Binding functions 189 Binding and retention of the template *polynucleotide* (*mRNA-binding site*) 189 / Retention of peptidyl-tRNA or deacylated tRNA (tRNA-binding P-site) 194 / Binding of aminoacyl-tRNA (tRNA-binding A-site) 197 / Binding of translation factors and GTP (factor-binding site) 200 11-3 Catalytic functions 204GTPase 204 / Peptidyl transferase 204 11-4 Function of ligand displacement (translocation) 209 References 210 Further reading 214

12. Elongation I: Aminoacyl-tRNA Binding with the Ribosome 216

12-1 Codon-anticodon interaction 216

Adaptor hypothesis and itsproof216 / The concept of anticodon217 /Wobble hypothesis218 / Corrections towobbling rules222 / Stereochemistry ofcodon-anticodon pairing223

12-2 Participation of the elongation factor (EF-T_u or EF-1) in aminoacyl-tRNA binding 225 $EF-T_{\mu}$ and its interactions 225 / Binding the ternary complex with the ribosome 228 / Role of GTP 228 hydrolysis 12-3 "Nonenzymatic" (factor-free) binding of aminoacyl-tRNA 230 12-4 Inhibitors 231 12-5 Miscoding 234 Misreading of poly(U) 234 / Principal types of mispairing 236 / Factors contributing to miscoding 236 / Miscoding level in vivo under normal conditions 238 / Kinetic mechanisms of miscoding and miscoding correction 241 12-6 Sequence of events and molecular mechanisms 244 Scanning of tRNA species 244 / Recognition of anticodon 246 / Correction of GTP hydrolysis 247 / aminoacyl-tRNA selection 247 / Locking of aminoacyl-tRNA in the A-site 248 / General scheme 248 References 250 256

13. Elongation II: Transpeptidation (Peptide Bond Formation) 258

- 13-1 Chemistry of the reaction 258
- 13-2 Energy balance of the reaction 262
- 13-3 Inhibitors 263
- 13-4 Stereochemistry 266

Further reading

References 271

14. Elongation III: Translocation

- 14-1 Definition and experimental tests 274
- 14-2 Participation of the elongation factor (EF-G or EF-2) 276

- 14-3 Role of EF-G-mediated GTP hydrolysis 279
- 14-4 Sequence of events in EF-G-catalyzed translocation: Inhibitors 280
- 14-5 "Nonenzymatic" (factor-free) translocation 283
- 14-6 Movement of the template during translocation 285
- 14-7 Energetics of translocation 286
- 14-8 Molecular mechanisms of translocation 288
- 14-9 Summary: The material and energy balance of the elongation cycle 289
 References 290
 Further reading 293

15. Elongation IV: Rate Modulation

- 15-1 Discontinuities in elongation 295
- 15-2 Selective regulation of elongation rate on different mRNAs 297
- 15-3 Total regulation of elongation rate 298
 Slowing-down of elongation upon virus infections 298 / Total repression of elongation by bacterial and plant toxins 299 / Regulation of the elongation rate through endogeneous modifications of elongation factors 304
 References 305

16. Initiation of Translation and Its Regulation in Procaryotes 308

- 16-1 Significance of initiation 308
- 16-2 Initiation codons, initiator tRNA, and protein initiation factors 309
- 16-3 State of ribosomes before initiation 312
- 16-4 Association of the ribosome with the template polynucleotide 312
- 16-5 Sequence of events during initiation 313
- 16-6 Initiation in the absence of some initiation components 319
- 16-7 Regulation of initiation: Control of protein synthesis at the translational level 321

Regulation of translation of MS2 phageRNA322 / Regulation of thesynthesis of ribosomal proteins325References332Further reading338

17. Initiation of Translation and Its Regulation in Eucaryotes 339

- 17-1 Characteristics of eucaryotic mRNA 339
- 17-2 Initiation codon, initiator tRNA, and protein initiation factors 341
- 17-3 State of ribosomes before initiation 346
- 17-4 Formation of the complex between the 40Sribosomal subunit and the initiatortRNA 346
- 17-5 Association of the ribosomal 40S subunit with mRNA 347
- 17-6 Recognition of the initiation codon 350
- 17-7 Formation of the initiation ribosomal 80S complex 352
- 17-8 Regulation of initiation 353
 Selective discrimination of mRNA 355 / Repression of initiation 357
 References 361
 Further reading 367

18. Termination of translation

- 18-1 Termination codons 369
- 18-2 Termination protein factors 371
- 18-3 Ribosomal site for binding termination factors 372
- 18-4 Hydrolysis of peptidyl-tRNA 373
- 18-5 Sequence of events during termination 374References 376

19. Cotranslational Folding, Compartmentalization, and Modifications of Proteins

- 19-1 Contribution of ribosomes to protein folding 378
- 19-2 Interaction of the ribosome and the nascent peptide with the membrane: Cotranslational transmembrane transport 381

369

Synthesis of proteins by free and membrane-bound polyribosomes 381 / Interaction between the ribosome and the membrane 382 / N-terminal signal sequence of the nascent polypeptide 385 / Signal recognition particles and their membrane receptors 391

 19-3 Cotranslational modifications of proteins 394
 References 398
 Further reading 403