PART ONE

MECHANICAL MODELS

INTRODUCTION	17
I. HEURISTIC CLASSICAL MECHANICS	
A. NONRELATIVISTIC THEORY	
1. Processes of a masspoint under the action of a force field	21
2. Canonical formalism due to an observer	22
3. Absolute canonical formalism	27
4. The process space of a masspoint under the action of a potential field	30
5. Galilean invariance	36
6. Probabilistic aspects	41
7. Systems of masspoints	45
8. Particles with spin	53
9. Identical particles	57
10. Constraints	59
11. Rigid bodies	63
B. SPECIAL RELATIVISTIC THEORY	
1. The process space of a particle under the action of a potential field and	
the canonical formalism	72
2. Poincaré invariance	77
3. Probabilistic aspects	79
4. Particle systems	80
II. HEURISTIC QUANTUM MECHANICS	
A. NONRELATIVISTIC THEORY	
1. The process space of a masspoint under the action of a potential field	82
2. Gauge transformations	89

3. Galilean invariance	90
4. Probabilistic aspects	94
5. Systems of masspoints	96
6. Particles with spin	101
7. Identical particles	104
8. Rigid bodies	106
9. Concluding remarks	112
B. SPECIAL RELATIVISTIC THEORY	
1. The process space of a particle under the action of a potential field	113
2. Poincaré invariance	120
	: -
III. GENERAL MECHANICAL MODELS	123
IV. CLASSICAL MECHANICAL MODELS	
0. Preliminaries	129
A NONDELATIVISTIC THEODY	
1. Particle models	121
2 Multinarticle models	131
3 Rigid body models	140
5. Rigid body models	140
B. SPECIAL RELATIVISTIC THEORY	
1. Particle models	143
V. OUANTUM MECHANICAL MODELS	
0. Preliminaries	145
A NONDEL ATHUGTIC THEODY	
A. NONRELATIVISTIC THEORY	1.4.5
1. Particle models	145
2. Multiparticle models	148
5. Kigid body models	149
B. SPECIAL RELATIVISTIC THEORY	
1. Particle models	150
VI. DISCUSSIONS	
1. General remarks on mechanics	152
2. The ideology of classical mechanics	153
3. The ideology of quantum mechanics	155

4. The validity domain of mechanical description	157
5. Relations between classical and quantum mechanics	159
6. Notes on statistical mechanics	159
7. Notes on field theories	160

PART TWO

MATHEMATICAL TOOLS

VII. THE GENERAL SCHEME OF MATHEMATICAL STRUCTURES	
Categories	167
VIII. STRUCTURES FOR PROBABILITY THEORY	
1. Orthomodular σ -lattices	170
2. Subset lattices	173
3. Hilbert lattices	175
Exercises	177
IX. PROBABILITY THEORY	
1. Fundamentals	180
2. Probability theory on subset lattices	184
3. Probability theory on Hilbert lattices	187
Exercises	192
X. STAR ALGEBRAS	
1. Star algebras	195
2. Complexifications	198
3. Clifford algebras	202
Exercises	208
XI SOME TOPICS FROM FUNCTIONAL ANALYSIS	
1. Tensor products of Hilbert spaces	210
2. Vector operators	215
3. Trace class operators	221
4. Tempered distributions	222
5. Multiplication and differentiation operators	227
Exercises	228

XII. INTEGRATION BY PROJECTION VALUED MEASURES	
1. Complex measures	230
2. Integration by projection valued measures	232
3. Vector integration by projection valued measures	235
4. The role of sets of zero measure	238
5. Transformation properties and commutation properties	240
6. Support and spectrum	242
7. The spectral theorem and product of projection valued measures	244
8. Characteristic projection valued measures	248
Exercises	249
XIII. SYMPLECTIC MANIFOLDS	
1. Poisson bracket	251
2. Quotient symplectic manifolds	255
Exercises	256
XIV. GROUP REPRESENTATIONS	
1. Fundamentals	257
2. Unitary representations	259
3. Unitary ray representations	264
4. Cocycles	270
5. Lie representations	275
6. Symplectic representations	279
7. Star representations	284
8. The adjoint representation of Lie groups	285
Exercises	288
XV. REPRESENTATIONS OF SPACE-TIME GROUPS	
1. The orthogonal group of (E , D , γ)	292
2. The Galilean group	296
3. The Lorentz group	307
4. The Poincaré group	312
Exercises	321
LIST OF SYMBOLS	325
BIBLIOGRAPHY	331
SUBJECT INDEX	333