contents

preface xiii
acknowledgments xv
about this book xvi
about the author xx
about the cover xxi

7 What is deep learning? 3

1.1 Artificial intelligence, machine learning, and deep learning 4

Artificial intelligence 4 • Machine learning 4 • Learning representations from data 6 • The "deep" in deep learning 8 Understanding how deep learning works, in three figures 9 What deep learning has achieved so far 11 • Don't believe the short-term hype 12 • The promise of AI 13

1.2 Before deep learning: a brief history of machine learning 14

Probabilistic modeling 14 • Early neural networks 14
Kernel methods 15 • Decision trees, random forests,
and gradient boosting machines 16 • Back to neural
networks 17 • What makes deep learning different 17
The modern machine-learning landscape 18

1.3	Why deep learning? Why now? 20						
	Hardware 20 • Data 21 • Algorithms 21 • A new wave of investment 22 • The democratization of deep						
	learning 23 • Will it last? 23						

2 Before we begin: the mathematical building blocks of neural networks 25

- 2.1 A first look at a neural network 27
- 2.2 Data representations for neural networks 31

 Scalars (OD tensors) 31 * Vectors (1D tensors) 31

 Matrices (2D tensors) 31 * 3D tensors and higherdimensional tensors 32 * Key attributes 32

 Manipulating tensors in Numpy 34 * The notion
 of data batches 34 * Real-world examples of data
 tensors 35 * Vector data 35 * Timeseries data or
 sequence data 35 * Image data 36 * Video data 37
- 2.3 The gears of neural networks: tensor operations 38

 Element-wise operations 38 Broadcasting 39 Tensor dot 40 Tensor reshaping 42 Geometric interpretation of tensor operations 43 A geometric interpretation of deep learning 44
- 2.4 The engine of neural networks: gradient-based optimization 46

 What's a derivative? 47 Derivative of a tensor operation: the gradient 48 Stochastic gradient descent 48

 Chaining derivatives: the Backpropagation algorithm 51
- 2.5 Looking back at our first example 53
- 2.6 Chapter summary 55

3 Getting started with neural networks 56

- 3.1 Anatomy of a neural network 58

 Layers: the building blocks of deep learning 58 Models:
 networks of layers 59 Loss functions and optimizers: keys
 to configuring the learning process 60
- 3.2 Introduction to Keras 61

 Keras, TensorFlow, Theano, and CNTK 62 Developing with Keras: a quick overview 62
- 3.3 Setting up a deep-learning workstation 65

 Jupyter notebooks: the preferred way to run deep-learning experiments 65 Getting Keras running: two options 66

CONTENTS ix

	Running deep-learning jobs in the cloud: pros and cons 66 What is the best GPU for deep learning? 66
3.4	Classifying movie reviews: a binary classification example 68
	The IMDB dataset 68 • Preparing the data 69 Building your network 70 • Validating your approach 73 Using a trained network to generate predictions on new data 76 • Further experiments 77 • Wrapping up 77
3.5	Classifying newswires: a multiclass classification example 78
	The Reuters dataset 78 • Preparing the data 79 Building your network 79 • Validating your approach 80 Generating predictions on new data 83 • A different way to handle the labels and the loss 83 • The importance of having sufficiently large intermediate layers 83 • Further experiments 84 • Wrapping up 84
3.6	Predicting house prices: a regression example 85
	The Boston Housing Price dataset 85 • Preparing the data 86 • Building your network 86 • Validating your approach using K-fold validation 87 • Wrapping up 9
3.7	Chapter summary 92
Funde	amentals of machine learning 93
4.1	Four branches of machine learning 94
	Supervised learning 94 • Unsupervised learning 94 Self-supervised learning 94 • Reinforcement learning 95
4.2	Evaluating machine-learning models 97
	Training, validation, and test sets 97 • Things to keep in mind 100
4.3	Data preprocessing, feature engineering, and feature learning 101
	Data preprocessing for neural networks 101 • Feature engineering 102
4.4	Overfitting and underfitting 104
	Reducing the network's size 104 • Adding weight

4.5 The universal workflow of machine learning 111

Defining the problem and assembling a dataset 111

Choosing a measure of success 112 • Deciding on an

regularization 107 • Adding dropout 109

evaluation protocol 112 • Preparing your data 112 Developing a model that does better than a baseline 113

	Scaling up: developing a model that overfits 114 Regularizing your model and tuning your hyperparameters 114	
	4.6 Chapter summary 116	
PART 2	DEEP LEARNING IN PRACTICE 1	7
5	Deep learning for computer vision 119	
darla sir kada	5.1 Introduction to convnets 120	
	The convolution operation 122 • The max-pooling operation 127	
	5.2 Training a convnet from scratch on a small dataset 130	
	The relevance of deep learning for small-data problems 130 Downloading the data 131 • Building your network 133 Data preprocessing 135 • Using data augmentation 138	
	5.3 Using a pretrained convnet 143	
	Feature extraction 143 • Fine-tuning 152 • Wrapping up 159	
	5.4 Visualizing what convnets learn 160	
	Visualizing intermediate activations 160 • Visualizing convnet filters 167 • Visualizing heatmaps of class activation 172	
	5.5 Chapter summary 177	
6	eep learning for text and sequences 178	
	6.1 Working with text data 180	
	One-hot encoding of words and characters 181 • Using word embeddings 184 • Putting it all together: from raw text to word embeddings 188 • Wrapping up 195	
	6.2 Understanding recurrent neural networks 196	
	A recurrent layer in Keras 198 • Understanding the LSTM and GRU layers 202 • A concrete LSTM example in Keras 204 • Wrapping up 206	
	6.3 Advanced use of recurrent neural networks 207	
	A temperature-forecasting problem 207 • Preparing the data 210 • A common-sense, non-machine-learning baseline 212 • A basic machine-learning approach 213 A first recurrent baseline 215 • Using recurrent dropout	

xi

to fight overfitt	ing 216	Stackin	ng recurrent layers	217
			Going even further	222
Wrapping up	223			

6.4 Sequence processing with convnets 225

Understanding 1D convolution for sequence data 225

1D pooling for sequence data 226 • Implementing a 1D

convnet 226 • Combining CNNs and RNNs to process long
sequences 228 • Wrapping up 231

CONTENTS

6.5 Chapter summary 232

7 Advanced deep-learning best practices 233

7.1 Going beyond the Sequential model: the Keras functional API 234

Introduction to the functional API 236 • Multi-input models 238 • Multi-output models 240 • Directed acyclic graphs of layers 242 • Layer weight sharing 246 • Models as layers 247 • Wrapping up 248

- 7.2 Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard 249

 Using callbacks to act on a model during training 249

 Introduction to TensorBoard: the TensorFlow visualization framework 252 Wrapping up 259
- 7.3 Getting the most out of your models 260

 Advanced architecture patterns 260 Hyperparameter optimization 263 Model ensembling 264 Wrapping up 266
- 7.4 Chapter summary 268

Senerative deep learning 269

8.1 Text generation with LSTM 271

A brief history of generative recurrent networks 271 • How do you generate sequence data? 272 • The importance of the sampling strategy 272 • Implementing character-level LSTM text generation 274 • Wrapping up 279

- 8.2 DeepDream 280

 Implementing DeepDream in Keras 281 Wrapping up 286
- 8.3 Neural style transfer 287

 The content loss 288 The style loss 288 Neural style transfer in Keras 289 Wrapping up 295

8.4	Generating images with variational autoencoders	296
	Sampling from latent spaces of images 296 - Concept vecto	rs
	for image editing 297 • Variational autoencoders 298	
	Wrapping up 304	

- 8.5 Introduction to generative adversarial networks 305

 A schematic GAN implementation 307 A bag of tricks 307

 The generator 308 The discriminator 309 The adversarial network 310 How to train your DCGAN 310 Wrapping up 312
- 8.6 Chapter summary 313

O Conclusions 314

9.1 Key concepts in review 315

Various approaches to AI 315 * What makes deep learning special within the field of machine learning 315 * How to think about deep learning 316 * Key enabling technologies 317 The universal machine-learning workflow 318 * Key network architectures 319 * The space of possibilities 322

- 9.2 The limitations of deep learning 325

 The risk of anthropomorphizing machine-learning models 325

 Local generalization vs. extreme generalization 327

 Wrapping up 329
- 9.3 The future of deep learning 330

 Models as programs 330 Beyond backpropagation and differentiable layers 332 Automated machine learning 332

 Lifelong learning and modular subroutine reuse 333

 The long-term vision 335
- 9.4 Staying up to date in a fast-moving field 337

 Practice on real-world problems using Kaggle 337

 Read about the latest developments on arXiv 337

 Explore the Keras ecosystem 338
- 9.5 Final words 339
- appendix A Installing Keras and its dependencies on Ubuntu 340 appendix B Running Jupyter notebooks on an EC2 GPU instance 345 index 353