Contents

Preface, xi

Acknowledgments, xvii

About the Author, xix

SECTION I Building Intuition

CHAPTER 1 • Variations on a Theme of Control	3
LEARNING OBJECTIVES	3
VARIATIONS	3
AUTOREGULATION	4
OUR THEME: A TYPICAL NEGATIVE AUTOREGULATORY CIRCUIT	8
CHAPTER SUMMARY	11
RECOMMENDED READING	11
CHAPTER 2 • Variation: Boolean Representations	13
LEARNING OBJECTIVES	13
BOOLEAN LOGIC AND RULES	13
STATE MATRICES	17
STATE TRANSITIONS	18
DYNAMICS	19
TIMESCALES	24
ADVANTAGES AND DISADVANTAGES OF BOOLEAN	
ANALYSIS	26

CHAPTER SUMMARY	26
RECOMMENDED READING	27
PROBLEMS	27
CHAPTER 3 • Variation: Analytical Solutions of Ordinary	
Differential Equations	35
LEARNING OBJECTIVES	35
SYNTHETIC BIOLOGICAL CIRCUITS	36
FROM COMPARTMENT MODELS TO ODES	37
SPECIFYING AND SIMPLIFYING ODES WITH ASSUMPTIONS	41
THE STEADY-STATE ASSUMPTION	43
SOLVING THE SYSTEM WITHOUT FEEDBACK: REMOVAL OF ACTIVATOR	44
KEY PROPERTIES OF THE SYSTEM DYNAMICS	46
SOLVING THE SYSTEM WITHOUT FEEDBACK: ADDITION OF ACTIVATOR	47
COMPARISON OF MODELING TO EXPERIMENTAL MEASUREMENTS	49
ADDITION OF AUTOREGULATORY FEEDBACK	50
COMPARISON OF THE REGULATED AND UNREGULATED SYSTEMS	53
CHAPTER SUMMARY	57
RECOMMENDED READING	58
PROBLEMS	59
CHAPTER 4 • Variation: Graphical Analysis	65
LEARNING OBJECTIVES	65
REVISITING THE PROTEIN SYNTHESIS ODES	66
PLOTTING X VERSUS DX/DT	67
FIXED POINTS AND VECTOR FIELDS	68
FROM VECTOR FIELDS TO TIME-COURSE PLOTS	70
NONLINEARITY	70
BIFURCATION ANALYSIS	73

	ADDING FEEDBACK	75
	TWO-EQUATION SYSTEMS	77
	CHAPTER SUMMARY	81
	RECOMMENDED READING	82
	PROBLEMS	83
С	HAPTER 5 • Variation: Numerical Integration	91
-	LEARNING OBJECTIVES	91
	THE EULER METHOD	92
	ACCURACY AND ERROR	94
	THE MIDPOINT METHOD	99
	THE RUNGE-KUTTA METHOD	103
	CHAPTER SUMMARY	106
	RECOMMENDED READING	106
	PROBLEMS	107
C	HAPTER 6 • Variation: Stochastic Simulation	111
	LEARNING OBJECTIVES	111
	SINGLE CELLS AND LOW MOLECULE NUMBERS	111
	STOCHASTIC SIMULATIONS	113
	THE PROBABILITY THAT TWO MOLECULES INTERACT AND REACT IN A GIVEN TIME INTERVAL	116
	THE PROBABILITY OF A GIVEN MOLECULAR REACTION OCCURRING OVER TIME	118
	THE RELATIONSHIP BETWEEN KINETIC AND STOCHASTIC CONSTANTS	119
	GILLESPIE'S STOCHASTIC SIMULATION ALGORITHM	120
	STOCHASTIC SIMULATION OF UNREGULATED GENE EXPRESSION	124
	STOCHASTIC SIMULATIONS VERSUS OTHER MODELING	263
	APPROACHES	131
	CHAPTER SUMMARY	132
	RECOMMENDED READING	132
	PROBLEMS	133

SECTION II From Circuits to Networks

CHAPTER 7 Transcriptional Regulation	143
LEARNING OBJECTIVES	143
TRANSCRIPTIONAL REGULATION AND COMPLEXITY	144
MORE COMPLEX TRANSCRIPTIONAL CIRCUITS	145
THE TRANSCRIPTIONAL REGULATORY FEED-FORWARD MOTIF	147
BOOLEAN ANALYSIS OF THE MOST COMMON INTERNALLY CONSISTENT FEED-FORWARD MOTIF IDENTIFIED IN <i>E. COLI</i>	147
AN ODE-BASED APPROACH TO ANALYZING THE COHERENT FEED-FORWARD LOOP	150
ROBUSTNESS OF THE COHERENT FEED-FORWARD LOOP	152
	155
EXPERIMENTAL INTERROGATION OF THE COHERENT FEED-FORWARD LOOP	155
CHANGING THE INTERACTION FROM AN AND TO AN OR RELATIONSHIP	156
THE SINGLE-INPUT MODULE	160
JUST-IN-TIME GENE EXPRESSION	162
GENERALIZATION OF THE FEED-FORWARD LOOP	164
AN EXAMPLE OF A MULTIGENE FEED-FORWARD LOOP: FLAGELLAR BIOSYNTHESIS IN <i>E. COLI</i>	166
OTHER REGULATORY MOTIFS	168
CHAPTER SUMMARY	169
RECOMMENDED READING	170
PROBLEMS	171
CHAPTER 8 - Signal Transduction	179
LEARNING OBJECTIVES	179
RECEPTOR-LIGAND BINDING TO FORM A COMPLEX	179
APPLICATION TO REAL RECEPTOR-LIGAND PAIRS	183
FORMATION OF LARGER COMPLEXES	187
PROTEIN LOCALIZATION	188

	THE NF-KB SIGNALING NETWORK	191
	A DETAILED MODEL OF NF-KB ACTIVITY	193
	ALTERNATIVE REPRESENTATIONS FOR THE SAME PROCESS	198
	SPECIFYING PARAMETER VALUES FROM DATA	200
	BOUNDING PARAMETER VALUES	206
	MODEL SENSITIVITY TO PARAMETER VALUES	207
	REDUCING COMPLEXITY BY ELIMINATING PARAMETERS	210
	PARAMETER INTERACTIONS	213
	CHAPTER SUMMARY	216
	RECOMMENDED READING	217
	PROBLEMS	218
1	HAPTER 9 Metabolism	233
	LEARNING OBJECTIVES	233
	CELLULAR METABOLISM	233
	METABOLIC REACTIONS	234
	COMPARTMENT MODELS OF METABOLITE CONCENTRATION	237
	THE MICHAELIS-MENTEN EQUATION FOR ENZYME	
	KINETICS	237
	DETERMINING KINETIC PARAMETERS FOR	1010
	THE MICHAELIS-MENTEN SYSTEM	245
	INCORPORATING ENZYME INHIBITORY EFFECTS	247
	FLUX BALANCE ANALYSIS	252
	STEADY-STATE ASSUMPTION AND EXCHANGE FLUXES	255
	SOLUTION SPACES	258
	THE OBJECTIVE FUNCTION	259
	DEFINING THE OPTIMIZATION PROBLEM	262
	SOLVING FBA PROBLEMS USING MATLAB	263
	APPLICATIONS OF FBA TO LARGE-SCALE METABOLIC	
	MODELS	271
	USING FBA FOR METABOLIC ENGINEERING	274
	CHAPTER SUMMARY	279

x Contents

RECOMMENDED READING	281
PROBLEMS	282
CHAPTER 10 Integrated Models	295
LEARNING OBJECTIVES	295
DYNAMIC FBA: EXTERNAL VERSUS INTERNAL CONCENTRATIONS	296
ENVIRONMENTAL CONSTRAINTS	298
INTEGRATION OF FBA SIMULATIONS OVER TIME	300
COMPARING DYNAMIC FBA TO EXPERIMENTAL DATA	303
FBA AND TRANSCRIPTIONAL REGULATION	304
TRANSCRIPTIONAL REGULATORY CONSTRAINTS	305
REGULATORY FBA: METHOD	306
REGULATORY FBA: APPLICATION	308
TOWARD WHOLE-CELL MODELING	310
CHAPTER SUMMARY	315
RECOMMENDED READING	316
PROBLEMS	317

GLOSSARY, 323

INDEX, 333