Paperback Re-issue

This textbook on the calculus of variations leads the reader from the basics to modern aspects of the theory. One-dimensional problems and classical issues like Euler-Lagrange equations are treated, as are Noether's theorem, Hamilton–Jacobi theory, and in particular geodesic lines, thereby developing some important geometric and topological aspects. The basic ideas of optimal control theory are also given. The second part of the book deals with multiple integrals. After a review of Lebesgue integration, Banach and Hilbert space theory and Sobolev spaces (with complete and detailed proofs), there is a treatment of the direct methods and the fundamental lower semicontinuity theorems. Subsequent chapters introduce the basic concepts of the modern calculus of variations, namely relaxation, Gamma convergence, bifurcation theory and minimax methods based on the Palais-Smale condition. The prerequisites are only the basic results from calculus of one and several variables. After having studied this book, the reader will be well equipped to read research papers in the calculus of variations.

Cambridge Studies in Advanced Mathematics

EDITORS

D. J. H. Garling *University of Cambridge* W. Fulton *University of Chicago*

T. tom Dieck University of Göttingen

P. Walters Warwick University

	face and summary	page x
nen	narks on notation	xv
	Part one: One-dimensional variational problems	1
1	The classical theory	3
1.1	The Euler-Lagrange equations. Examples	3
1.2	The idea of the direct methods and some regularity results	
1.3	The second variation. Jacobi fields	10
1.4	Free boundary conditions	18
1.5	Symmetries and the theorem of E. Noether	24 26
2	A geometric example: geodesic curves	32
2.1	The length and energy of curves	32
2.2	Fields of geodesic curves	43
2.3	The existence of geodesics	51
3	Saddle point constructions	62
3.1	A finite dimensional example	62
3.2	The construction of Lyusternik-Schnirelman	67
4	The theory of Hamilton and Jacobi	79
4.1	The canonical equations	79
4.2	The Hamilton-Jacobi equation	81
4.3	Geodesics	87
4.4	Fields of extremals	89
4.5	Hilbert's invariant integral and Jacobi's theorem	92
4.6	Canonical transformations	95

viii	Contents

5	Dynamic optimization	104
5.1	Discrete control problems	104
5.2	Continuous control problems	106
5.3	The Pontryagin maximum principle	109
	Part two: Multiple integrals in the calculus of variations	115
1	Lebesgue measure and integration theory	117
1.1	The Lebesgue measure and the Lebesgue integral	117
1.2	Convergence theorems	122
2	Banach spaces	125
2.1	Definition and basic properties of Banach and Hilbert	10.40/100
	spaces	125
2.2	Dual spaces and weak convergence	132
2.3	Linear operators between Banach spaces	144
2.4	Calculus in Banach spaces	150
3	L^p and Sobolev spaces	159
3.1	L^p spaces	159
3.2	Approximation of L^p functions by smooth functions	
	(mollification)	166
3.3	Sobolev spaces	171
3.4	Rellich's theorem and the Poincaré and Sobolev	
	inequalities	175
4	The direct methods in the calculus of variations	183
4.1	Description of the problem and its solution	183
4.2	Lower semicontinuity	184
4.3	The existence of minimizers for convex variational	
	problems	187
4.4	Convex functionals on Hilbert spaces and Moreau-	
	Yosida approximation	190
4.5	The Euler–Lagrange equations and regularity questions	195
5	Nonconvex functionals. Relaxation	205
5.1	Nonlower semicontinuous functionals and relaxation	205
5.2	Representation of relaxed functionals via convex	
	envelopes	213
6	Γ-convergence	225
6.1	The definition of Γ-convergence	225

	Contents	ix
6.2	Homogenization	231
6.3	Thin insulating layers	235
7	BV-functionals and Γ-convergence: the example of	
	Modica and Mortola	241
7.1	The space $BV(\Omega)$	241
7.2	The example of Modica–Mortola	248
Appe	endix A The coarea formula	257
Appe	endix B The distance function from smooth hypersurfaces	262
8	Bifurcation theory	266
8.1	Bifurcation problems in the calculus of variations	266
8.2	The functional analytic approach to bifurcation theory	270
8.3	The existence of catenoids as an example of a bifurca-	
	tion process	282
9	The Palais-Smale condition and unstable critical	
	points of variational problems	291
9.1	The Palais-Smale condition	291
9.2	The mountain pass theorem	301
9.3	Topological indices and critical points	306
Inde	\boldsymbol{x}	319