Contents

Acknowledgments Xi
1 Introduction 1
1.1 Whence This Book? 1
1.2 Why Coqg? 3
1.21 Based on a Higher-Order Functional
Programming Language 3
1.2.2 Dependent Types 3
1.2.3 An Easy-to-Check Kernel Proof Language
1.2.4 Convenient Programmable Proof Automation
5
1.25 Proof by Reflection 6
1.3 Why Not a Different Dependently Typed Language?
6
1.4 Engineering with a Proof Assistant 7
1.5 Prerequisites 8
1.6 Using This Book 8

1.6.1 Reading This Book 9
1.6.2 The Tactic Library 10
1.6.3 Installation and Emacs Setup 11

Some Quick Examples 13

2.1

2.2

Arithmetic Expressions over Natural Numbers 13
2.1.1 Source Language 14

2.1.2 Target Language 17

2.1.3 Translation 18

2.1.4 Translation Correctness 19
Typed Expressions 28

2.2.1 Source Language 28

2.2.2 Target Language 31

2.2.3 Translation 33

\

I
3

2.2.4 Translation Correctness 35

Basic Programming and Proving 39

Introducing Inductive Types 41

3.1 Proof Terms 41

3.2 Enumerations 43

3.3 Simple Recursive Types 47
3.4 Parameterized Types 51

3.5 Mutually Inductive Types 53
3.6 Reflexive Types 56

3.7 An Interlude on Induction Principles 60

3.8 Nested Inductive Types 64

3.9 Manual Proofs about Constructors 69
Inductive Predicates 73

4.1 Propositional Logic 74

4.2 What Does It Mean to Be Constructive? 80
4.3 First-Order Logic 81

4.4 Predicates with Implicit Equality 82

45 Recursive Predicates 86

Infinite Data and Proofs 93

51 Computing with Infinite Data 94
5.2 Infinite Proofs 98
5.3 Simple Modeling of Nonterminating Programs

Programming with Dependent Types 111

Subset Types and Variations 113

6.1 Introducing Subset Types 113
6.2 Decidable Proposition Types 121
6.3 Partial Subset Types 124

6.4 Monadic Notations 126

6.5 A Type-Checking Example 127

General Recursion 133

7.1 Well-Founded Recursion 134

7.2 A Nontermination Monad Inspired by Domain
Theory 140

7.3 Co-inductive Nontermination Monads 147

106

Contents

Contents

7.4 Comparing the Alternatives 151

8 More Dependent Types 155

8.1 Length-Indexed Lists 155

8.2 The One Rule of Dependent Pattern Matching in
Coq 159

8.3 A Tagless Interpreter 161

8.4 Dependently Typed Red-Black Trees 167

8.5 A Certified Regular Expression Matcher 178

9 Dependent Data Structures 185

9.1 More Length-Indexed Lists 185
9.2 Heterogeneous Lists 189
9.2.1 A Lambda Calculus Interpreter 191
9.3 Recursive Type Definitions 193
9.4 Data Structures as Index Functions 196
9.4.1 Another Interpreter Example 200
9.5 Choosing between Representations 205

10 Reasoning about Equality Proofs 207

10.1 The Definitional Equality 207

10.2 Heterogeneous Lists Revisited 211

10.3 Type Casts in Theorem Statements 217
10.4 Heterogeneous Equality 222

10.5 Equivalence of Equality Axioms 227
10.6 Equality of Functions 229

11 Generic Programming 233

11.1 Reifying Datatype Definitions 233
11.2 Recursive Definitions 236
11.2.1 Pretty-Printing 239
11.2.2 Mapping 242
11.3 Proving Theorems about Recursive Definitions 243

12 Universes and Axioms 251

12.1 The Type Hierarchy 251
12.1.1 Inductive Definitions 255
12.1.2 Deciphering Baffling Messages about Inability
to Unify 259
12.2 The Prop Universe 261
12.3 Axioms 265
12.3.1 The Basics 265

vil

vili

12.3.2 Axioms of Choice 270
12.3.3 Axioms and Computation 273
12.3.4 Methods for Avoiding Axioms 275

Il Proof Engineering 285

13 Proof Search by Logic Programming 287

13.1 Introducing Logic Programming 287

13.2 Searching for Underconstrained Values 295
13.3 Synthesizing Programs 298

13.4 More on auto Hints 302

135 Rewrite Hints 304

14 Proof Search in Ltac 309

14.1

Some Built-in Automation Tactics 309

14.2 Ltac Programming Basics 310

14.3

Functional Programming in Ltac 318

14.4 Recursive Proof Search 323

14.5

Creating Unification Variables 330

15 Proof by Reflection 339

151
15.2

15.3
15.4

15.5

Proving Evenness 339

Reifying the Syntax of a Trivial Tautology Language

342

A Monoid Expression Simplifier 345

A Smarter Tautology Solver 348

15.4.1 Manual Reification of Terms with Variables
354

Building a Reification Tactic That Recurses under

Binders 357

IV The Big Picture 361

16 Proving in the Large 363

16.1
16.2
16.3
16.4

Ltac Antipatterns 363

Debugging and Maintaining Automation 372
Modules 380

Build Processes 384

Contents

Contents

17 Reasoning about Programming Language Syntax
389

17.1 Dependent de Bruijn Indices 390

17.2 Parametric Higher-Order Abstract Syntax 397
17.2.1 Functional Programming with PHOAS 399
17.2.2 Verifying Program Transformations 402
17.2.3 Establishing Term Well-Formedness 408
17.2.4 A Few Additional Remarks 409

Conclusion 411
References 413

Index 419

rX

