Contents 12 Contents 13 Contents 14 Contents 15 Contents 16 Contents 17 Conten

A	cknov	vledgme	ents xi		
1	Inte	oductio			
1					
	1.1		This Book?		
	1.2	Why Co		nductive Predicates	
				Order Functional	
			Programming Langu		
			Dependent Types		
				Kernel Proof Language 4	
		1.2.4	Convenient Program	nmable Proof Automation	
		1.2.5 I	Proof by Reflection	official Data and Pr 6	
	1.3	Why No	ot a Different Deper	idently Typed Language?	
		6			
	1.4	Enginee	ring with a Proof A	Assistant 7	
	1.5		isites 8		
	1.6	Using T	his Book 8		
		1.6.1	Reading This Book	9 days animamentable	
			The Tactic Library	10	
			Installation and Em	acs Setup 11	
2	Son	ne Quic	k Examples 1		
	2.1	Arithme	etic Expressions ove	er Natural Numbers 13	
	3.53		Source Language	14 monatoWorkers 14	
			Target Language	A Type-Checking Ex 71	
			Translation 18		
			Translation Correct	ness 19	
	2.2		Expressions 28	Well-Founded Recursion	
	2.2	0 -	Source Language	28 MinoraniametaoM A	
			Target Language	Theory 140	
			Translation 33	Co-inductive Nonterminat	

2.2.4 Translation Correctness 35

Ι	Ba	asic Programming and Proving 39			
3	3.1	Proof Terms 41			
	3.2	Enumerations 43			
	3.3	Simple Recursive Types 47			
	3.4	Parameterized Types 51			
	3.5	Mutually Inductive Types 53			
	3.6	Reflexive Types 56			
	3.7	An Interlude on Induction Principles 60			
	3.8 3.9	Nested Inductive Types 64 Manual Proofs about Constructors 69			
4	Inc	luctive Predicates 73			
	4.1	Propositional Logic 74			
	4.2	What Does It Mean to Be Constructive? 80			
	4.3	First-Order Logic 81			
	4.4	Predicates with Implicit Equality 82			
	4.5	Recursive Predicates 86			
5	Infinite Data and Proofs 93 93				
	5.1	Computing with Infinite Data 94			
	5.2	Infinite Proofs 98			
	5.3	Simple Modeling of Nonterminating Programs 106			
II	Pr	ogramming with Dependent Types 111			
6	Sul	oset Types and Variations 113			
	6.1	Introducing Subset Types 113			
	6.2	Decidable Proposition Types 121			
	6.3	Partial Subset Types 124			
	6.4	Monadic Notations 126			
	6.5	A Type-Checking Example 127			
7	Ge	neral Recursion 133			
	7.1	Well-Founded Recursion 134			
	7.2	A Nontermination Monad Inspired by Domain Theory 140			
	7.3	Co-inductive Nontermination Monads 147			

7.4	Comparing the Alternatives 151					
8 Mo	More Dependent Types 155					
8.1	Length-Indexed Lists 155					
8.2	The One Rule of Dependent Pattern Matching in					
0.2	Cog 159					
8.3	A Tagless Interpreter 161					
8.4	Dependently Typed Red-Black Trees 167					
8.5	A Certified Regular Expression Matcher 178					
9 Dep	pendent Data Structures 185					
9.1	More Length-Indexed Lists 185					
9.2	Heterogeneous Lists 189					
	9.2.1 A Lambda Calculus Interpreter 191					
9.3	Recursive Type Definitions 193					
9.4	Data Structures as Index Functions 196					
	9.4.1 Another Interpreter Example 200					
9.5	Choosing between Representations 205					
10 Por	asoning about Equality Proofs 207					
	18 18 18 2 2 TH 2015 HE					
10.1	The Definitional Equality 207					
10.2	Heterogeneous Lists Revisited 211 Type Casts in Theorem Statements 217					
10.3	Type Casts in Theorem Statements 21.					
10.4	Heterogeneous Equality 222 Equivalence of Equality Axioms 227					
10.5	Equivalence of Equation 122					
10.6	Equality of Functions 229					
11 Ge	neric Programming 233					
11.1	Reifying Datatype Definitions 233					
11.2	Recursive Definitions 236					
	11.2.1 Pretty-Printing 239					
	11.2.2 Mapping 242					
11.3	Proving Theorems about Recursive Definitions 243					
12 Un	iverses and Axioms 251					
12.1	The Type Hierarchy 251					
	12.1.1 Inductive Definitions 255					
	12.1.2 Deciphering Baffling Messages about Inability					
	to Unify 259					
12.2	The Prop Universe 261					
	Axioms 265					
	12.3.1 The Basics 265					

	12.3.2 Axioms of Choice 270 12.3.3 Axioms and Computation 273 12.3.4 Methods for Avoiding Axioms 275			
	8.1 Length-indexed issistory usons gumminarigor a one 8.2 The One Rule of Dependent Pattern Matching in .			
III Pr	oof Engineering 285			
13 Pro	oof Search by Logic Programming 287			
13.1 13.2 13.3 13.4 13.5	Introducing Logic Programming 287 Searching for Underconstrained Values 295 Synthesizing Programs 298			
14 Pro	oof Search in Ltac 309			
14.1 14.2	Some Built-in Automation Tactics 309 Ltac Programming Basics 310			
14.3 14.4 14.5	Functional Programming in Ltac 318 Recursive Proof Search 323 Creating Unification Variables 330			
15 Pro	oof by Reflection 339			
	Proving Evenness 339 Reifying the Syntax of a Trivial Tautology Language 342			
15.3 15.4	A Monoid Expression Simplifier 345 A Smarter Tautology Solver 348 15.4.1 Manual Reification of Terms with Variables 354			
15.5	Building a Reification Tactic That Recurses under Binders 357			
IV Th	e Big Picture 361			
16 Pro	oving in the Large 363			
16.1 16.2 16.3 16.4	Ltac Antipatterns 363 Debugging and Maintaining Automation 372 Modules 380 Build Processes 384			
10.4	Build Trocesses 504			

17 Reasoning about Programming Language Syntax 389

17.1 Dependent de Bruijn Indices 390
17.2 Parametric Higher-Order Abstract Syntax 397
17.2.1 Functional Programming with PHOAS 399
17.2.2 Verifying Program Transformations 402
17.2.3 Establishing Term Well-Formedness 408
17.2.4 A Few Additional Remarks 409

Conclusion 411

References 413

Index 419